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models was evaluated using the coefficient of determination (R2).  An accuracy assessment using 

independent test points was performed for the best model.  Overall this study found that lower 

numbers of training points resulted in higher R2; however, models with high R2 did not show 

high accuracy levels when validated against an independent sample of data.  Predicted values for 

AGB models were consistent among models that modeled: all tree species; all tree species in 

interior forest stands; hardwood stands; or pine stands. 
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CHAPTER 1 

Introduction  

 

1.1 Global warming, carbon budget trading and remote sensing 

Since the beginning of the Landsat Project, led by mainly NASA and the U.S. Geological 

Survey (USGS) in 1972, numerous types of satellite imagery have been available for public use.  

Various researchers in different areas of research have developed techniques to classify ground 

features in remotely sensed images, such as those captured by a Landsat Thematic Mapper 5 

(TM).  Results of this work have made it possible to efficiently produce land cover/type maps at 

broad spatial scales.  Given that satellite imagery has been used to classify vegetation, it is not 

unreasonable to expect that TM imagery could be used to estimate above ground biomass (AGB) 

in forestland even though AGB is measured on a continuous scale, whereas vegetation is usually 

limited to a small set of discrete classes.  If so, substantial cost savings could be gained in terms 

of time, and labor associated with conventional field measurements for AGB estimation.   

Global warming has received much attention around the world for decades.  Because of 

accumulating CO2 in the atmosphere from combustible fuels and land-use changes as well as the 

subsequent loss of forests to sequestrate carbon, various scientists and international organizations 

have warned that the global mean temperature may increase 1.4-5.8°C by the end of the 21st 

century (IPCC 2001).  Mote et al. (2003) predicted temperature increases of 1.5-3.2°C in the 

Pacific Northwest by the 2040s, which would result in below average salmon survival and tree 

growth in the region.  Logan et al. (2003) warned that there is a great possibility of insect and 
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pathogen outbreaks in forestland due to global warming.  Furthermore, Walther et al. (2002) 

warned that global warming would, particularly, influence ecosystems in the northern 

hemisphere regarding phenological cycles, exotic species invasions and community shifts.  

Therefore, to maintain global ecosystems close to present conditions, we need to find globally 

practical solutions to mitigate CO2 concentration in the atmosphere.  This is the reason that on 

August 31, 2005, 155 nations ratified the Kyoto Protocol, a global agreement that aims to cut 

anthropogenic CO2 emission levels to at least 5% lower than 1990 levels by 2008-2012 (UNFCC 

2005). 

Various scientists have tried to determine the causes and mechanisms of global warming.  

Unfortunately, they have not found a definititive answer yet, but most scientists have agreed that 

global warming has occurred, and CO2 accumulation in the atmosphere is the major cause 

(Litynski et al. 2006).  Excess CO2 accumulation comes primarily from anthropogenic activities, 

such as the combustion of fossil fuels, land use change and deforestation (Litynski et al. 2006).  

To mitigate global warming from CO2 buildup in the atmosphere, forests could play a key role 

because they fix CO2 gas into tree structures as a solid carbon form; thus, forests could be a 

dominant carbon sink among terrestrial ecosystems.  The Kyoto Protocol promotes conservation 

and maintenance of forests, and proposes a new system for dealing with CO2 reduction called 

carbon budget trading.  Under this new system, industries that release CO2 into the atmosphere 

must recapture a portion of this emitted carbon through other activities, such as growing forests.  

Under the Kyoto Protocol, these firms are not required to grow forests themselves, but if not they 

must purchase an equivalent portion of carbon-fixed forest area.  The assumption in carbon 

budget trading is that industries that find it difficult to regulate or minimize CO2 emissions while 

maintaining (or increasing) profits, could capture their assigned levels of fixed carbon by 
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purchasing and preserving an equivalent amount of forestland as carbon credits (Jung 2005).  To 

implement the new method, however, a method is needed to easily assess how much biomass is 

present in forests, especially as above ground biomass (AGB) in the form of tons carbon (ton-c).   

Various conventional field measurement methods can be used to carry out accurate AGB 

estimation at the stand-level, but because of labor, costs and time considerations, it is difficult to 

scale up such analyses beyond the stand-level.  Also, analyses are likely to require additional 

visits to verify AGB at later times.  Additionally, conventional field measurements are not easily 

done in remote areas, such as forestlands in roadless areas or mountain ranges.  The goal of this 

study was to evaluate the applicability of a new method capable of rapidly and accurately 

estimating AGB at stand to landscape extents, using readily available remotely sensed imagery, 

such as Landsat TM, as well as readily available AGB estimation method for a small to medium 

sized landowner.  A secondary goal was to determine how many training points were necessary 

to obtain reasonablely high accuracy estimate of AGB. 

 

1.2 Five major advantages of using Landsat TM imagery for AGB estimation 

Advantage 1 - cost of TM image 

In 2006, the year of this study, one TM image cost about $425 (USGS 2006), which was 

inexpensive relative to other remotely sensed images (Lefsky et al. 2001).  For example, 

IKONOS images, which were made available beginning in 2000, offer higher spatial resolution 

than Landsat TM.  However, the price of the images is much more expensive, ranging from 

$2,000 to $4,000 for an image covering only a small portion of a TM image.   
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Advantage 2 - coverage size 

One TM image covers an area of 170×185 km (3,145,000 ha), which is greater than the 

area captured by traditional aerial photographs (using a 9×9 inch format), as well as other 

remotely sensed images (Ahern et al. 1991, Lefsky et al. 2001).  Also, Landsat TM provides 

worldwide coverage.  Some remote sensing services, such as IKONOS, capture images in limited 

areas. 

 

Advantage 3 - spectral range 

 Landsat TM is equipped with a multispectral sensor to sense a wide range of spectral 

information reflected from objects on the Earth.  The multispectral sensor is composed of seven 

different spectral ranges, called TM bands 1-7, basically covering the visible light region to a 

thermal infrared region.  The spectral resolutions of TM bands are listed in Table 1.  Some other 

satellite sensors, such as IKONOS, do not cover such wide range of spectral resolutions.   

 

Table 1.  The spectral resolution of Landsat TM 5 image 

 

TM Band Spectral Sensitivity  
(µm) Spectral Region

1 0.45 - 0.52 Blue
2 0.52 - 0.60 Green
3 0.63 - 0.69 Red
4 0.76 - 0.90 Near infrared
5 1.55 - 1.75 Mid infrared
6 10.40 - 12.5 Thermal
7 2.08 - 2.35 Mid infrared
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Advantage 4 - temporal resolution 

Landsat TM re-visits the same area to capture an image every 16 days.  This enables 

frequent assessment of subtle land cover and biomass changes, such as those caused by natural 

disasters (Ahern et al. 1991).  One must, however, determine whether images acquired on cloud-

free days were available over this time interval; thus, repeatability may not necessary be 16 days.   

 

Advantage 5 - available AGB estimation methods 

Researchers have developed a wide variety of image classification methods as well as 

AGB estimation methods, in conjunction with TM images over the last three decades.  While 

certain AGB estimation methods are difficult to implement for workers without advanced 

mathematical and computer skills (Foody et al. 2001), one simple method, regression analysis, is 

available and has potential for fairly accurate AGB estimation in various forestland types at the 

landscape level.   

 

1.3 Four ambiguous factors associated with Landsat TM imagery for AGB estimation  

For accurate AGB estimation, one needs to examine and overcome four ambiguous 

factors associated with TM images.   

 

Ambiguous factor 1 - mixed pixel problems 

The pixel (or ground) resolution of TM images may not be sufficient for moderately 

accurate (R2 of 0.6-0.8) AGB estimation with respect to carbon budget trading.  The pixel 

resolution is 30×30 m (0.09 ha), which makes “mixed pixels” an issue.  For instance, if an area 

of 30×30 meters in a forest stand is occupied by maple (60%) and oak (40%), the pixel in the 
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image may show the reflectance value of only maple, and perhaps the oak reflectance would be 

ignored if the oak is dominant only in the understory.  In fact, the pixel reflectance value might 

represent an entirely different species than either maple or oak, if both are dominant in the 

overstory.  Thus, it may be difficult to estimate AGB at different points in the objective area due 

to pixel resolution.  However, the high pixel resolution of an IKONOS image, providing a 4×4 m 

pixel resolution, also may not be appropriate because it would capture too much of natural 

variation caused by sun angle, topography, different crown shapes among the same species, 

natural breaks in the canopy, as well as other abiotic and biotic factors.  This heterogeneity in 

spectral reflectance would make estimating AGB problematic using very high pixel resolution 

imagery (e.g., < 10 m pixel sizes).   

 

Ambiguous factor 2 - stand parameters for AGB estimation 

It is difficult to assess valuable stand parameters for AGB estimation from TM images.  

Generally, AGB is estimated through an allometric equation with stand parameters, such as stem 

diameter, tree height, stand age, or leaf area index acquired from field measurements.  However, 

to acquire such stand parameters using the ground resolution of 30×30 m represented by TM 

image pixels presents a problem.  It is almost impossible to acquire individual stem diameter and 

height due to the pixel resolution.  To address this problem, a simplifying assumption must be 

made: a level of crown closure which can be reliably measured using TM images (Fassnacht et 

al. 1997, Eklundh et al. 2001, Eriksson et al. 2006) corresponding to a spectral reflectance value 

in a pixel is assumed to indirectly correlate to average stem diameter and height in a 30×30 m 

field point.  In this manner, AGB can be estimated based on a TM image.   
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Ambiguous factor 3 - sizes of objective areas for AGB estimation 

Few previous studies for AGB estimation from TM images have been implemented on 

forestlands smaller than 5,000 hectares.  A reason might relate to the locational error between a 

pixel in a TM image and a field point (Hall et al. 2006, Labrecque et al. 2006).  First, delineating 

and orienting a square field plot in the field is difficult, and second, ensuring that it physically 

matches a satellite image pixel is impossible.  Such locational error would exist when sizes of 

objective areas are smaller.  However, this study is concerned with the process by which a small 

to medium sized landowner might successfully employ to estimate AGB.   

 

Ambiguous factor 4 - required training and test AGB data for AGB estimation 

A major problem for AGB estimation based on TM imagery is that the accuracy of 

predicted AGB will depend on the number of training points derived from field measurements 

used to build the regression equations.  Few previous studies for AGB estimation using TM 

images have assessed the minimum required number of training points require to achieve a 

desired level of accuracy.  Furthermore, for a validation or accuracy assessment of regression 

AGB estimation models, independent field measurements are needed.  Some previous studies 

(e.g. Steininger 2000) did not validate their models with additional field data.    

 

Therefore, this thesis assessed the applicability of a Landsat TM image for AGB 

estimation in a small forested site.  First, this research focused on the development of the 

relationship between spectral reflectance values from a Landsat TM image and field measured 

AGB from conventional field measurement using regression analysis.  The fit of developed 

models to the observed field data was assessed using the coefficient of determination (R2) 
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between estimated AGB and field measured AGB.  Second, while few previous studies have 

intensively examined the relationship between required numbers of training points in the 

development of regression models, this research investigated how many training points are 

needed to derive a certain accuracy level in AGB estimation using a single Landsat TM image.   
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CHAPTER 2 

Literature review 

 

2.1 Overview of AGB estimation using Landsat TM imagery 

Since the beginning of Landsat project in 1972, research has been conducted to examine 

various methods aimed at estimating AGB in various types of forestlands (e.g. Ripple et al. 

1991, Holmgren et al. 2000, Lu et al. 2004).  Examples of widely used AGB estimation methods 

include artificial neural networks, k-nearest neighbors, and regression analysis.  Each of these 

will be addressed shortly.  Regression models that use spectral reflectance values from TM 

imagery and field measured AGB from training points are often evaluated using the coefficient 

of determination (R2), adjusted coefficient of determination (R2
adj), coefficient of correlation (r), 

the root square mean error (RSME), or standard error (SE).  Higher values of R2, R2
adj and r, and 

smaller values of RSME and SE indicate better estimation models or a tighter fit to the observed 

data.  Models need to be validated using independently field measured AGB from test points.  

However, a limited number of previous studies assessed their models in this manner (e.g. Foody 

et al. .2001, Ingram et al. 2005, but see Franklin 1986, Ahern et al. 1991, Steininger 2000).  A 

major reason was that it was difficult to collect additional field data, as a test dataset, for 

assessment purposes.   
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2.2 Five issues regarding three image AGB estimation methods 

There are five issues associated with the three widely used AGB estimation methods.  

The first relates to the optimal area required to derive accurate results of AGB estimates.  

Although a number of previous studies did not report the size of the study areas, a majority of 

previous AGB estimation studies focused on areas greater than 5,000 ha.  Ahern et al. (1991) 

suggested that one should be able to derive reliable forest parameters, such as AGB, in areas 

greater than 100,000 ha using remotely sensed imagery.  AGB estimation would be more 

accurate in larger areas than smaller areas using a TM image, because some noise or errors in 

spectral reflectance values would be mitigated by surrounding pixels after applying a moving 

window approach to smoothing the data. 

The second issue relates to how many training data are necessary to derive strong 

predictive regression models.  Some previous studies used a large number of training plots, like 

the U.S. Forest Service’s Forest Inventory and Analysis (FIA) data (e.g. Holmgren et al. 2000, 

Reese et al. 2002), but a majority of developed estimation models were based on less than 100 

training plots. 

The third issue is that one may not be able to estimate AGB using TM imagery.  A TM 

image contains spectral reflectance values associated only with the material present in uppermost 

layer (e.g., vegetation’s canopy or crown structure), whereas AGB includes the entire structure 

of a forest including understory canopy and shrub layers.  Some previous studies reported that 

spectral reflectance values and leaf area index (LAI), particularly in hardwood stands, were 

correlated (Ahern et al. 1991, Steinger 2000, Lu et al. 2004).  Thus, canopy structure, as a forest 

parameter, may indirectly relate to AGB.  For example, one assumption is that larger canopy 

trees would contain greater biomass.  However, a problem is that a TM image may not clearly 
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represent some aspects of canopy structure, such as crown height.  Canopy structures in older 

stands tend to have increased number of shadows, which means decreasing spectral reflectance 

values in certain band ranges, such as bands 5 and 7.  Contrarily, canopy structures in younger 

stands tend to increase spectral reflectance values in bands 5 and 7.  In addition, stand 

conditions, such as closed canopy or open canopy stands, influence spectral reflectance values in 

TM bands.  Spectral reflectance values in open canopy stands would contain a mixture of 

reflectance values from understory and overstory vegetation, as well as the soil.  This problem is 

inherent in the three widely used AGB estimation methods.   

The forth issue is that it is difficult to accurately locate training points and test points in a 

study site exactly to a single pixel in a TM image.  While locations of training and test points are 

usually determined by GPS in the study site, GPS points have positional errors, which normally 

range from 3 to 15 m, depending on the conditions of overstory vegetation, topography, and 

satellite geometry.  Also, it is almost impossible to locate precisely each training and test point 

on the center of 30 m grid of Landsat pixels.  To accommodate this locational problem, some 

researchers have used a moving window, such as a 3×3 window (e.g. Salvador and Pons 1998, 

Foody et al. 2001, Makela and Pekkarinen 2001, Lu et al. 2004, Labrecque et al. 2006).  A 

moving window averages the spectral reflectance values in surrounding pixels; thus, in the case 

of the 3×3 window, the spectral reflectance values of nine pixels are averaged.  A majority of the 

articles has reported that the 3×3 moving window approach resulted in the development of 

stronger AGB estimation models than a strict pixel-based (SPB) approach of using the single 

pixel that matched the single field point (Hall et al. 2006, Labrecque et al. 2006).  The study site 

in this study was a small forest of about 300 ha, and a number of the pixels fall on edges of 

stands between vegetated and non-vegetated areas.  Thus, a moving window would not be 
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suitable because the average spectral reflectance value likely contains non-vegetated spectral 

reflectances.  Instead of performing a moving window, this study performed an inversely 

weighted Euclidean distance (IWED) approach, and results of developed AGB estimation 

models were compared to results based on a SPB approach.  The IWED approach averages 

spectral reflectance values in four closest pixels from each training point (including the single 

pixel the point falls in), and those four spectral reflectance values are inversely weighted based 

on Euclidean distances between each training point and the centers of four closest pixels.  This 

approach is somewhat similar to a moving window, but because of the small geographic extent 

of the study area, the IWED approach should be more appropriate. 

Finally, a wide rage of literature has reported that using values from vegetation indices 

(assigned to each pixel) would be superior to using values straight from the TM bands (e.g. 

Foody et al. 2001, Mallinis et al. 2004, Freitas et al. 2005, Ingram et al. 2005).  Using vegetation 

indices can maximize the sensitivity for capturing the abundance and condition of green 

vegetation.  Vegetation indices may minimize the effects of sun angles, topography, and 

atmospheric variability.  However, because various combinations of TM bands 1-5 and 7 are 

used to develop a majority of the vegetation indices, information in other TM bands is not used, 

even though it could contribute to the development of a stronger predictive model (Foody et al. 

2001).  For example, the most widely used vegetation index, the normalized difference 

vegetation index (NDVI), uses only TM bands 3 and 4.  This thesis selected and examined three 

vegetation indices to determine whether they could improve the accuracy of AGB estimation, 

compared with spectral reflectance values in the original TM bands.  
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2.3 Three widely used AGB estimation methods 

Artificial Neural Networks  

Foody et al. (2001) developed three types of artificial neural networks to estimate 

biomass in the Bornean tropical rainforest.  In this study, twenty training plots were used to 

develop the estimation model, and ten test plots were used to assess actual and estimated 

biomass.  One of the artificial neural networks developed had a strong predictive model (R2 = 

0.8033).  Foody et al. (2003) also developed an artificial neural network to estimate AGB in the 

Brazilian, Thai and Malaysian tropical rainforests.  They developed a fair estimation model with 

an R2 of 0.505 for the Thailand study.  The prediction accuracy of this model between actual and 

estimated AGB was R2 of 0.411, but the article did not report how many test plots were used for 

this assessment.   

Ingram et al. (2005) developed an artificial neural network to estimate basal area, as a 

related parameter to AGB, in the southern Madagascar tropical rainforest.  They developed a fair 

estimation model of r = 0.82.  Fifteen training plots were used for model development and 

sixteen test plots were used to estimate accuracy (r = 0.69).   

These three studies using artificial neural networks were also compared with regression 

analysis techniques.  The conclusions were generally that artificial neural networks should be 

superior to regression analysis.  However, one issue in the study was the limited number of 

training and test plots compared to what has been used in other similar studies to evaluate the 

applicability of artificial neural networks (Foody et al. 2001).  In addition, the size of their study 

sites was not reported.  Further, the development of artificial neural networks would require 

advanced programming skills, and it is difficult to understand the behavior of an internal process 

within an artificial neural network from simply examining input and output data (Foody, et al. 
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2001).  Since this project was aimed at a method that a small lot landowner could employ, we 

chose not to pursue this method. 

 

k-Nearest Neighbors (kNN) 

 Holmgren et al. (2000) developed a kNN approach to estimate stem volume in 19 ha 

stands in the western Sweden.  Based on only spectral information in TM bands, they developed 

an estimation model, which arrived at standard error (SE) of 36%.  Two hundred ninety-six 

training plots from the National Forest Inventory were used in this model development.  Also, 

besides spectral information in the TM image, Holmgren et al. (2000) reported that SE decreased 

once additional ancillary information, such as site index, stand age, or tree height was integrated 

within the kNN technique.   

 Reese et al. (2002) developed a kNN approach to estimate timber volume at five different 

locations in Sweden.  They developed estimation models, which had a RMSE between 59% and 

80% for mean wood volume.  These models were developed based on a strict pixel-based 

approach.  National Forest Inventory data were used for the training and test data, but the number 

of training data for estimation models and the assessment for those models were not reported.  

Aggregations of smaller stands to set larger spatial areas decreased RMSE about 20% for 50 ha, 

and about 10% for 100 ha.   

 Labrecque et al. (2006) developed three types of kNN techniques to estimate biomass in 

western Newfoundland.  The developed estimation models had a RMSE of about 37-81 tons per 

ha.  One hundred sixty-nine training plots were used for the model development, and they were 

assessed based on two hundred seventy-six test plots.  About 85% of the study sites consisted of 
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conifer stands.  Also, the article reported that RMSEs were lower than biomass estimates 

developed through regression analysis techniques.   

 One issue in using kNN techniques for AGB estimation is that users need to arbitrarily 

decide the optimal number of k, which depends on training and other ancillary data, and the 

target level of accuracy (Reese et al. 2002).  In addition, kNN tends to overestimate forest 

parameters, such as timber volume, in low volume stands, and underestimate these in high 

volume stands (Fazakas et al. 1999, Holmgren et al. 2000, Reese et al. 2002).  In addition, a 

majority of previous studies performing kNN to estimate forest parameters were done for 

conifer-dominated forestlands, such as boreal forests and plantation forestlands.  Thus, the 

applicability of kNN in hardwood-dominated forestlands has not been determined.  Finally, a 

majority of previous studies used various government-level forest inventory data as training and 

test data.  While such type of inventory data may cover larger spatial areas, it may not represent 

conditions of forestlands at spatial extents smaller than 510 ha (Fazakas et al. 1999) since the 

plots are generally spaced tens of thousands of km apart.  Consequently, kNN techniques may 

not be suitable to apply small forestland areas. 

 

Regression analysis 

Franklin (1986) performed regression analysis to estimate basal area in stands in the 

Mendocino National Forest, California.  This study used an airborne thematic mapper simulator, 

which has a similar sensor characteristic to TM spectral bands, but the pixel resolution was not 

reported.  A developed estimation model had an R2 of 0.54 between band 3 and actual basal area 

from nineteen training plots, but this model was not assessed using independent test plots.  

Importantly, the article reported that spectral reflectance values in TM bands may be more 
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strongly affected by stand structure and density, rather than species composition in conifer-

dominated forestland.   

Ahern et al. (1991) performed regression analysis to estimate Picea spp. and Abies spp. 

(spruce-fir) volume in the northwestern New Brunswick.  A developed regression model had an 

R2 of 0.808 between band 4 and actual volume.  The relationship indicated that spectral 

reflectance values in band 4 were higher in low volume spruce-fir stands, and lower in high 

volume stands due to the influence of hardwood adjacent to spruce-fir.  However, this estimation 

model was not assessed using independent test plots.  Also, the article did not report the number 

of training plots used to develop the regression model.  

Steininger (2000) performed regression analysis to estimate AGB in tropical secondary 

forests at Brazil and Bolivia.  In the Brazilian study site, the best estimation model had an r 

(coefficient of correlation) of 0.715, between band 5 and actual AGB from 18 training plots.  A 

multiple regression analysis using bands 3, 4 and 5 barely improved on this.  Contrarily, in the 

Bolivian study site, a strong predictive regression AGB estimation model could not be 

developed.  In the Brazilian study site, there was a strong correlation between crown structure 

and tree height, and AGB.  In other words, taller trees with larger crowns resulted in greater 

AGB, but in the Bolivian study site, such relationship was weak. The article reported that band 5 

was the most useful for AGB estimation.  However, this study did not assess the estimation 

model using independent test plots. 

Lefsky et al. (2001) performed regression analysis to estimate AGB and other forest 

parameters, such as mean DBH, in the Pseudotsuga menziesii (Douglas-fir) dominated forestland 

of western Oregon.  This study used two different types of TM imagery, one was used a single 

TM image, and the other was a TM mosaic that was built to combine six TM images, 
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representing six different months of a year.  Based on the single TM image, the best estimation 

model had an R2
adj of 0.31, and based on the TM mosaic, the best estimation model had an R2

adj 

of 0.60.  Both models were developed using ninety-two training plots.  Although the TM mosaic 

resulted in the development of a better predictive model than the single TM image, only two out 

of the six TM bands largely contributed such improvement.  Thus, the multitemporal mosaic 

approach may result in an unnecessary cost of extra images.  Additionally, both models were not 

assessed using independent test plots. 

Mallinis et al. (2004) performed regression analysis to estimate biomass in north-central 

Greece.  The best estimation model, but not statistically significant at the 0.05 level, had an R2
adj 

of 0.066 based on thirty-four training plots and band 4 of the TM imagery.  Two vegetation 

indices, the perpendicular vegetation index and the second principal component, improved 

predictive powers to R2
adj of 0.159 and 0.170, respectively, with statistical significant at the 0.01 

level.  Such a low R2
adj was probably due to abruptly fragmented forestlands.  Stand structure, 

such as density, species composition, AGB or other parameters, was not consistently estimated 

over the study area.  Thus, a strong relationship between spectral information in TM bands and 

AGB may not have been developed.   

Freitas et al. (2005) performed regression analysis to estimate basal area and mean height 

in stands in southeastern Brazil.  The study area was about 577 ha in size.  Instead of using 

spectral reflectance values in each TM band, values in three different vegetation indices were 

used to develop regression models.  Three vegetation indices were normalized difference 

vegetation index (NDVI), moisture vegetation index using band 5 (MVI5), and moisture 

vegetation index using band 7 (MVI7).  They arrived at an R2 of 0.898 for basal area estimation 
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using values only in MVI5.  Also, they arrived at an R2 of 0.882 for mean height estimation 

using values in MVI5 and MVI7 as a multiple regression model. 

Lu et al. (2005) performed regression analysis to estimate AGB in the Brazilian Amazon.  

The best AGB estimation model of a study site had an R2 of 0.826 between band 5 and actual 

AGB from fourteen training plots.  Also, some vegetation indices were strongly correlated with 

actual AGB.  The tasseled cap transform 1 arrived at an R2 of 0.835.  However, AGB estimation 

models of one of the study sites did not result in high R2 between TM bands and vegetation 

indices, and actual AGB.   While training plots in this site showed different amounts of AGB, 

height distributions were similar among plots.  Thus, the literature concluded that it is difficult to 

develop strong predictive models for complex structure stands.  However, the developed models 

were not assessed using independent test plots.   

 

 The primarily finding is previous studies did not report what geographic scales of 

forestlands would be suitable to use a Landsat TM image based AGB estimation.  Also, some 

studies resulted in the development of high R2 models based on smaller number of training 

points, but some other studies resulted in the development of low R2 models based on greater 

number of training points.  At last, most previous studies did not assess accuracy levels of 

developed regression models.  Without model assessments, applicability of regression analysis is 

unknown.  Therefore, these three factors were investigated in this thesis (see Chapter 3). 
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CHAPTER 3 

Purpose of the study 

 

3.1 Summary 

A major advantage in using regression analysis is that it should be the easiest to 

understand for people who are not experts in AGB estimation techniques.  The method is 

available in GIS programs such as ERDAS Imagine (Leica Geosystems Geospatial Imaging, 

LLC) and ArcGIS (ESRI).  In this study we used regression analysis techniques for AGB 

estimation, relating spectral reflectance values in TM bands 1-5 and 7, and actual AGB from 

training points.  While about 65% of our study site is occupied by temperate hardwood species, 

the accuracy level in AGB estimation for this forestland should be similar to those found in the 

Brazilian Amazon (e.g. Steininger 2000, Lu 2005), due to less complex stand structures in the 

study site chosen (Whitehall Forest, see Chapter 3 for a description of the study site).  However, 

since few studies have focused on AGB estimation for such a small forestland, the applicability 

of using TM imagery with regression analysis was uncertain at the beginning of this study. 

 

3.2 Objectives 

The general objective of this research was to assess the applicability of using TM 

imagery for estimating AGB of a small forestland.  The following are the specific objectives of 

the research.  
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1. Develop a regression model using spectral reflectance values in the TM image and 

field measured AGB from training points 

2. Develop a regression model between spectral reflectance values in the TM image and 

basal area and mean tree height derived from training points 

3. Assess the accuracy of the developed regression models against field measured AGB 

from independent test points 

4. Determine the required number of training points needed to develop a strong 

predictive model for AGB estimation in small areas 

5. Discuss the applicability of using TM imagery for AGB estimation on small 

forestlands 
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CHAPTER 4 

Methods 

 

4.1 Study area 

The study site for this AGB estimation study was the Whitehall Forest in Clarke County, 

Georgia (33º52’N and 83º22’W) (Figure 1).  The Whitehall Forest has an area of about 285 ha, 

and the elevation ranges between 160 and 220 m above sea level.  Mean monthly temperatures 

range from 0.6 ºC in winter to 32.2 ºC in summer.  Annual mean precipitation is about 127 cm.  

A large portion of the Whitehall Forest was once used for cotton plantations until the 1930s.  

After that time, the abandonment of old fields resulted in the establishment of natural hardwood 

and pine stands.  Later, some of these areas were cleared and converted to pine plantations.  

Since the 1960’s, the Warnell School of Forestry and Natural Resources at the University of 

Georgia has managed this property for teaching, research and outreach purposes.   

In 2006, about 65% of the Whitehall Forest was covered with hardwood stands, and 12% 

and 8% was covered with pine and mixed hardwood/pine (mixed) stands, respectively.  The rest 

of the area is composed of buildings, roads, ponds and open grass fields.  Hardwood stands are 

composed of various species, the majority being Quercus rubra (northern red oak), Quercus alba 

(white oak), Quercus spp. (other oak species), Carya spp. (hickory species), Liquidambar 

styraciflua (sweetgum), Liriodendron tulipifera (yellow-poplar) and Platanus occidentalis 

(sycamore).  Pine stands are composed of mainly planted Pinus taeda (loblolly pine) and some 

naturally regenerated Pinus echinata (shortleaf pine).  Most hardwood stands have reached 
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mature stages from natural regeneration after the abandonment of cotton plantations, but a few 

hardwood stands were planted.  Stand age classes among pine stands vary from 10 to 60 years.  

Stand age classes among mixed stands range from 20 to 40 years while most hardwood stand 

ages are similar.  Periodically, some forest stands are burned to control fuel loads, and to provide 

an educational experience for natural resource students.   

 

 

Figure 1.  Location of the Whitehall Forest (size 285 ha) with stand map 
in Clarke County, Georgia 
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4.2 Training and test points 

AGB and forest parameter estimation models for the entire study site 

In the Whitehall Forest, a total of three hundred eighty randomly located points were 

assigned (Figure 2) (Table 2) using a random process.  Three hundred randomly drawn points 

were used as training points, and remaining eighty points were retained for test points.  Of the 

three hundred training points, two hundred, one hundred, fifty, and thirty randomly drawn points 

were assigned as sets of training points for the development of AGB (total AGB per tons-c per 

0.09 ha) and forest parameter (total basal area in cm2 per 0.09 ha and mean total tree height per 

0.09 ha) estimation models.  Thus, four regression models were developed based on four 

different sets of training points.  Also, among the eighty test points, fifty randomly drawn points 

were used as independent test points for model assessment.  

 
Figure 2.  380 randomly located points (300 training and 80 test 
points) in the study site 
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Table 2.  Number of training points used to develop regression models and number of test 
points used to assess developed models.   

AGB Model Total field points

Numbers       
of             

potential       
training points

Numbers       
of             

used           
training points

Numbers       
of             

potential       
test points

Numbers       
of             

used           
test points

200 50

100 50

50 50

30 50

100 50

50 50

30 50

50 30

30 30

50 30

30 30

80

63

30

30

Interior forest stands       
(three regression  models) 200

The entire study site       
(four regression models) 300380

263

Interior pine stands        
(two regression models 81

Interior hardwood stands    
(two regression models) 92122

111

 

 

AGB and forest parameter estimation models for the interior forest stands 

To examine the impact of training points located closer to stand edges, such as edges to 

other species (hardwood vs. pine stands), and training points located near non-timber areas, two 

hundred sixty-three randomly located points, which were at least 30 m away from stand edges, 

were selected (Table 2).  Two hundred randomly drawn points were used as training points, and 

remaining sixty-three points were retained as test points.  Of the two hundred training points, one 

hundred, fifty, and thirty randomly drawn points were assigned as sets of training points for the 

development of AGB and forest parameter estimation models.  Thus, three regression models 

were developed based on three different sets of training points.  Also, among the sixty-three test 

points, fifty randomly drawn points were used as independent test points for model assessment. 
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AGB and forest parameter estimation models for the interior hardwood stands 

To examine the impact of multiple species stands on the development of estimation 

models, one hundred twenty-two randomly located points were selected from within hardwood 

stands (Table 2).  All points were at least 30 m away from stand edges.  Ninety-two randomly 

drawn points were used as training points, and the remaining thirty points were retained as test 

points.  Of the ninety-two training points, fifty, and thirty randomly drawn points were selected 

as sets of training points for the development of AGB and forest parameter estimation models.  

Thus, two regression models were developed based on two different sets of training points.  

Thirty test points were used as independent test points for model assessment.   

 

AGB and forest parameter estimation models for the interior pine stands 

One hundred and eleven randomly located points were selected from within pine stands 

(Table 2).  All points were at least 30 m away from stand edges.  Eighty-one randomly drawn 

points were used as training points, and the remaining thirty points were retained for test points.  

Of the eighty-one training points, fifty, and thirty randomly drawn points were assigned as sets 

of training points for the development of AGB and forest parameter estimation models.  Thus, 

two regression models were developed based on two different sets of training points for AGB 

and forest parameter estimation models of pine stands.  Thirty test points were used as 

independent test points for model assessment.  

 

4.3 Field measurement – Estimation of actual AGB in training and test points 

Between January and August in 2006, field-based estimates of AGB were done for three 

hundred eighty randomly located points in the Whitehall Forest (Figure 2).  Trees around each 
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point were sampled using a BAF 10 prism.  Per-0.09 ha (30×30 m) estimates of tree structure 

were developed for each point.  The collected forest parameters were diameter at breast height 

(DBH) and total tree height.  The location of each point was determined using a GPS unit 

(GeoExploer3; Trimble Navigation Limited) without onsite differential correction.   

First, to estimate AGB of each field point, standing tree volume (ft3), including saplings 

and nonmerchantable size trees, was derived using tree structure data with published allometric 

equations developed by Clark et al. (1986), and Clark and Saucier (1990).  Those equations are 

listed in Table 3.  Due to a lack of published allometric equations, some species were arbitrarily 

defined as other similar species.  For example, volumes of Quercus palustris (pin oak) were 

calculated from a volume equation of northern red oak.  To estimate AGB of each point, the 

conversion formula of a live tree carbon mass density (tons-c per ha) developed by Smith et al. 

(2004) was applied (Equation 1).  Accordingly, the scale of AGB was converted into ton-c per 

0.09 ha.  Finally, total basal area (cm2 per 0.09 ha) and mean tree height (m per 0.09 ha) were 

derived.   
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Table 3.  Volumes (wood only) of major species found in the study area. 

 Species DBH (inch) Volume (feet3) 
<  11.0 V = 0.00319 (DBH2 Th)0.96001

≥  11.0 V = 0.00221 (DBH2)1.03636 (Th)0.96001

<  11.0 V = 0.00336 (DBH2 Th)0.95017

≥  11.0 V = 0.00120 (DBH2)1.16449 (Th)0.95017

<  11.0 V = 0.00476 (DBH2 Th)0.91940

≥  11.0 V = 0.00173 (DBH2)1.13000 (Th)0.91940

<  11.0 V = 0.00343 (DBH2 Th)0.95978

≥  11.0 V = 0.00122 (DBH2)1.17575 (Th)0.95978

<  11.0 V = 0.00228 (DBH2 Th)1.00713

≥  11.0 V = 0.00138 (DBH2)1.11144 (Th)1.00713

<  11.0 V = 0.00459 (DBH2 Th)0.93189

≥  11.0 V = 0.00203 (DBH2)1.10193 (Th)0.93189

<  11.0 V = 0.00319 (DBH2 Th)0.96001

≥  11.0 V = 0.00221 (DBH2)1.03636 (Th)0.96001

<  5.0 V = 0.00211 (DBH2 Th)1.01241

≥  5.0 V = 0.00199 (DBH2)1.03101 (Th)1.01241

loblolly pine ≥  3.0 V = 0.00172 (DBH2 Th)1.02990

* Th (total tree height), DBH (1.37 m above forest floor)

shortleaf pine

red oak

water oak

hickory

yellow popular

sweetgum

blackgum

white oak
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 * the unit of live tree carbon mass density is (ton-c / ha) 

** volume = standing volume (m3 / ha)  
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4.4 Satellite image data 

Image preprocessing  

Two Landsat TM 5 images, covering the study area (Path 18 Row 36 and Path 18 Row 

37), were acquired on June 7, 2005 (Figure 3).  The images were georeferenced to UTM NAD 86 

Zone 17.  Using 15 ground control points and a nearest-neighbor method, a root square mean 

error of 0.6 pixels was achieved, which implies ±18 m ground accuracy.  The pixel size was set 

30 m for all subscenes except TM band 6 (thermal band).  Due to a coarse pixel resolution of 120 

m, TM band 6 was not considered in this study.  Haze and noise reduction procedures were 

applied to the image to eliminate unwanted spectral reflectance values in the TM images.

 

 

Figure 3.  Two Landsat TM 5 images present the Whitehall Forest.  As 
examples, true color (band combination of 1,2 and 3) and color infrared 
(band combination of 1,2 and 4) images are displayed.   
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Image classification – Spectral reflectance value extraction 

Five subscenes (TM bands 1-5 and 7 images) in a TM image (Path 18 Row 36) and three 

vegetation indices, NDVI, MVI5 and MVI7 (Freitas et al. 2005) were used for AGB estimation.  

This study applied two different approaches for spectral reflectance value extraction.  First, a 

strict pixel-based (SPB) approach, which extracts reflectance values directly from a pixel 

containing a corresponding training point (Figure 4).  Second, an inversely weighted Euclidean 

distance (IWED) approach, which averages spectral reflectance values of four closest pixels 

from each training point based on distances between each point to the center of these four closest 

pixels (Equation 2) (Figure 5).   
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  (Equation 2) 

where: = an Euclidean distance between a random point and a center of closest four pixels iy

 = a spectral reflectance value in a pixel  ix
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SRV = 100SRV = 200

SRV = 75 SRV = 50

A randomly located point

30 m

30 m

The spectral reflectance value (SRV) of 
this point is determined as 100. 

 

 
Figure 4.  A hypothetical example of the strict pixel-based (SPB) approach 
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Figure 5.  A hypothetical example of the inversely weighted Euclidean distance 
(IWED) approach 
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Development of vegetation indices  

Three vegetation indices, which were NDVI, MVI5 and MVI7 (Freitas et al. 2005), were 

developed using ERDAS Imagine software.  The formulas of each vegetation index were listed 

in Equations 3-5. 

 

NDVI = 
34
34

BandBand
BandBand

+
−   (Equation 3) 

MVI5 = 
35
35

BandBand
BandBand

+
−    (Equation 4) 

MVI7 = 
37
37

BandBand
BandBand

+
−   (Equation 5) 

 

Development of simple and stepwise regression models 

The spectral reflectance values estimated from the training points, and the field measured 

AGB and forest parameters (basal area and tree height) were used to develop the regression 

models.  First, simple regression models were developed using TM bands 1-5 and 7, and three 

vegetation indices (e.g. for the entire study site, there were four different sets of training points 

(n = 200,100, 50 and 30) with total nine independent variables; thus, 36 simple regression 

models were developed).  The spectral reflectance values in TM bands and values in vegetation 

indices were the independent variables, and AGB and forest parameters from the training points 

were the dependent variables.  Each simple regression model was evaluated using the coefficient 

of determination (R2).  Once a regression model with good predictive ability (higher R2 models) 

was developed, AGB or forest parameters for the entire area should be predicted.  Also, factors 

contributing to the development of strong R2 models were investigated regarding different 

numbers of training points, and characteristics of TM bands and vegetation indices.   
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Second, multiple combinations of extracted reflectance values from TM bands and 

vegetation indices were used to develop stepwise regression models.  The best combination of 

independent variables for AGB and forest parameter estimation was determined based on 

Akaike’s Information Criterion (AIC).  AIC is widely used as a criterion of model selection.  

While it may not select the best model, it selects a model, which works.  Again, factors 

contributing to strong R2 models were investigated regarding different numbers of training 

datasets, and characteristics of TM band and vegetation index combinations.  

 

4.5 Accuracy assessment 

 Accuracy of AGB estimation models and other forest parameter models was assessed 

using randomly located test points that were not included in the development of the regression 

models.  Each best predictive model (e.g. estimation of hardwood stands, estimation of pine 

stands) was selected to undergo an accuracy assessment.  The accuracy of the predicted AGB 

was assessed using the coefficient of determination (R2).  Higher values of R2 correspond to 

closer correlation between the estimated AGB from the developed regression model and field 

measured AGB from the independent test points.   

 Additionally, to examine the impact of numbers of test points on levels of R2 in the 

accuracy assessment, a bootstrapping technique was used.  The levels of R2 based on 30 sets of 

thirty and fifty randomly drawn test points from eighty potential test points were compared using 

the predictions from the best AGB estimation model. 

 Finally, using an error matrix, accuracy levels in each best AGB estimation model from 

the entire study site, the interior forest stands, the hardwood stands, and the pine stands were 

computed and the results compared.  Because the error matrix is generally used to evaluate 
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output data in categorical formats (e.g. land type classification), the continuous AGB values were 

arbitrary organized into eight classes, each with an interval of 25 ton-c per 0.09 ha.   
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CHAPTER 5 

Results 

5.1. Overall summary 

 Coefficient of determination (R2) of developed AGB, basal area, and height estimation 

models based on simple regression between field measured AGB, basal area, and height, and 

reflectance values in a single TM band or a vegetation index were low (R2 < 0.18).  Unlike some 

previous studies (e.g. Franklin 1986, Tortter et al. 1997), transformation (e.g. logarithmic and 

square root) of those independent variables did not improve R2 values (See Appendix A).  As a 

next step, estimation models were developed to perform stepwise regression with Akaike’s 

Information Criterion (AIC) used to rank the models and determine the best model.  However, 

results of best combination of independent variables in estimating AGB, basal area and tree 

height based on AIC did not show consistent trends (Appendix B-1 to B-22).  For example, some 

models seemed to be the best when using only band 1, which one would assume to be the least 

suitable band because theoretically, the wavelengths of light captured in TM band 1 (blue 

spectral region) are the most easily scattered spectrum in the atmosphere.  Thus, a majority of 

spectral information in band 1 was likely reflected from particles in the atmosphere.  On the 

other hand, some models were developed using all bands and all these vegetation indices.  

However, all three vegetation indices were developed based on band 3, and either band 4, 5 or 7 

(Equations 3-5); thus, for example, spectral information in bands 3 and 4, and NDVI are not 

independent.  In other words, spectral information in bands 3 and 4, and NDVI would strongly 

be correlated in some degree.  However, to maximize levels of R2, all regression models were 
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developed using all of the independent variables (bands 1-5 and 7, NDVI, MVI5 and MVI7) for 

AGB, basal area, and height estimation, and the spectral information from the bands and 

vegetation indices was assumed to be independent.   

 

5.2 Development and assessment of regression models for the entire study site 

 Among three hundred randomly located training points, thirty, fifty, one hundred, and 

two hundred randomly drawn points were used to develop estimation models, which predicted 

total AGB (ton-c per 0.09 ha), total basal area (cm2 per 0.09 ha), and mean total tree height (m 

per 0.09 ha).  The regression models were developed using all nine independent variables, and 

field measured AGB, basal area, and tree height from training points.  A maximum, minimum, 

average and standard deviation of coefficient of determination (R2) of each model were derived 

based on 30 sets of randomly drawn training points (Table 4) (Appendix A-1 to -8).  Lower 

numbers of training points produced better regression models, although the worst model 

produced was about the same level of R2 in each case.   

Lower numbers of training points, however, resulted in larger variation in R2 among 30 

sets of randomly drawn training points.  For example, while the standard deviation of R2 for 

AGB estimation model based on thirty training points was 0.1185, the standard deviation of R2 

based on two hundred training points was 0.0307 based on the SPB approach.  Additionally, 

although the SPB approach and the IWED approach were not much different when it came to R2 

values, the IWED approach seemed to result in the development of higher R2 maximum, 

minimum and average models for AGB and basal area, but not height.  Although those 

differences would be negligible overall, some models (e.g. for AGB estimation model based on 

30 training points) derived using the SPB approach had R2 values that were 0.100 higher.   
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Table 4.  Coefficient of determination (R2) between nine independent variables and field 
measured AGB, basal area, and height based on (a) thirty, (b) fifty, (c) one hundred, and 
(d) two hundred training points.  Maximum, minimum, average and standard deviation 
(SD) were determined based on 30 different randomly drawn sets of those numbers of 
training points. 

 

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.7774 0.6749 0.6159 0.6183 0.6830 0.7070
Min 0.2288 0.1320 0.2095 0.1364 0.1525 0.1955

Average 0.4395 0.4632 0.4255 0.4289 0.4237 0.4167
SD 0.1185 0.1179 0.1033 0.1219 0.1200 0.1224

(b) Based on fifty training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.5206 0.5501 0.4739 0.5516 0.6434 0.5867
Min 0.0947 0.1333 0.0466 0.1301 0.1874 0.1039

Average 0.3080 0.3347 0.2653 0.3047 0.4302 0.3259
SD 0.1007 0.0862 0.1040 0.0799 0.1174 0.1183

(c) Based on one hundred training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.4187 0.3237 0.3551 0.2790 0.3533 0.3353
Min 0.1480 0.1252 0.1119 0.0754 0.1465 0.0996

Average 0.2596 0.2073 0.2208 0.1706 0.2409 0.2120
SD 0.0636 0.0533 0.0598 0.0518 0.0458 0.0659

(d) Based on two hundred training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.2514 0.2690 0.2012 0.2408 0.2393 0.2318
Min 0.1231 0.1329 0.0832 0.0954 0.0971 0.0958

Average 0.1795 0.1885 0.1313 0.1506 0.1396 0.1624
SD 0.0307 0.0346 0.0296 0.0364 0.0304 0.0357

Above ground biomass Basal area Height

Above ground biomass Basal area Height

Above ground biomass Basal area Height

a Spectral reflectance value extraction based on strict pixel-based (SPB) approach 
b Spectral reflectance value extraction based on inversely weighted Euclidean distance (IWED) approach 

Above ground biomass Basal area Height

(a) Based on thirty training points
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 The best regression models using different numbers of training points (30, 50, 100 and 

200) were selected to undergo an accuracy assessment (Table 5), and coefficients and an 

intercept of each best predictive model of AGB, basal area, and height are summarized in Table 

12.  Interestingly, regression models with higher R2 values did not result in higher accuracy 

levels.  For example, although an AGB estimation model with R2 of 0.7774 was derived based 

on thirty training points with the SPB approach, this model resulted in R2 of 0.0370 in the 

accuracy assessment.  On the other hand, while the AGB estimation model with an R2 of 0.1231 

that was based on two hundred training points using the SPB approach, this model resulted in R2 

of 0.2015 in the accuracy assessment.  Additionally, accuracy levels between the SPB and IWED 

approach did not differ very much.   
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Table 5.  The accuracy assessment of developed regression estimation models for the study 
site.   
 

Dependent      
variables

Number        
of            

training points
Approach a Model R2 b

Number        
of            

test points

Model 
assessment     

in R2 c

AGB 30 SPB 0.7774 50 0.0370
Basal Area 30 SPB 0.6159 50 0.0091

Height 30 SPB 0.6830 50 0.0291
AGB 30 IWED 0.6749 50 0.0913

Basal Area 30 IWED 0.6183 50 0.0791
Height 30 IWED 0.7070 50 0.1258
AGB 50 SPB 0.5206 50 0.1961

Basal Area 50 SPB 0.4739 50 0.1075
Height 50 SPB 0.6434 50 0.0497
AGB 50 IWED 0.5501 50 0.1695

Basal Area 50 IWED 0.5516 50 0.1374
Height 50 IWED 0.5867 50 0.0555
AGB 100 SPB 0..4187 50 0.1816

Basal Area 100 SPB 0.3551 50 0.0839
Height 100 SPB 0.3533 50 0.1681
AGB 100 IWED 0.3237 50 0.1353

Basal Area 100 IWED 0.2790 50 0.2133
Height 100 IWED 0.0996 50 0.0851
AGB 200 SPB 0.1231 50 0.2015

Basal Area 200 SPB 0.2012 50 0.0574
Height 200 SPB 0.2393 50 0.1695
AGB 200 IWED 0.2690 50 0.2806

Basal Area 200 IWED 0.2408 50 0.2173
Height 200 IWED 0.2318 50 0.1007

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Approach for spectral reflectance value extraction, strict pixel-based (SPB) and inversely weighted Euclidean 
distance (IWED). 

b R2 of regression model between spectral reflectance value and field measured AGB, basal area, or height from 
training points. 

c R2 between field measured AGB from test points and estimated AGB from regression model. 

 
 
5.3 Development and assessment of regression models for the interior forest stands 

 Among three hundred randomly located training points, thirty, fifty and one hundred 

randomly drawn points were used to develop estimation models, which predicted total AGB 

(ton-c per 0.09 ha), total basal area (cm2 per 0.09 ha), and mean total tree height (m per 0.09 ha).  

However, only training points located at least 30 m away from stand edges were selected.  
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Regression models were developed using all nine independent variables, and field measured 

AGB, basal area, and tree height from training points.  A maximum, minimum, average and 

standard deviation of coefficient of determination (R2) of each model were derived based on 30 

sets of randomly drawn training points (Tables 6) (Appendix A-9 to -14).   

Here again, lower numbers of training points resulted in larger variation among 30 sets of 

randomly drawn training points regarding R2.  For example, while the standard deviation of R2 

for AGB estimation model based on thirty training points was 0.1303, the standard deviation of 

R2 based on one hundred training points was 0.0456, both based on the SPB approach.  And 

again, lower numbers of training points tended to have larger maximum, minimum and average 

R2.  This tendency seemed to be consistent for basal area and height estimation models.  

Additionally, although the SPB and the IWED approaches did not result in much difference 

regarding R2, to some degree the IWED approach seemed to result in the development of higher 

R2 maximum, minimum and average models for AGB, basal area, and height.  However, the 

differences were small overall.  Additionally, while training points located at least 30 m away 

from stand edges were selected, these results are not much different than when points near edges 

were used (Tables 4).   
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Table 6.  Coefficient of determination (R2) between nine independent variables and field 
measured AGB, basal area, and height based on (a) thirty, (b) fifty, and (c) one hundred 
training points in the interior forest stands.  Maximum, minimum, average and standard 
deviation (SD) were determined based on 30 different sets of those numbers of training 
points 

 

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.7175 0.7432 0.6807 0.6540 0.6842 0.7218
Min 0.1988 0.2840 0.1563 0.2107 0.1939 0.1590

Average 0.4363 0.4502 0.4007 0.4155 0.4618 0.4451
SD 0.1303 0.1005 0.1297 0.1110 0.1328 0.1688

(b) Based on fifty training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.6795 0.5602 0.5703 0.4756 0.5312 0.5803
Min 0.1614 0.1857 0.1458 0.1073 0.1632 0.1711

Average 0.3741 0.3908 0.3285 0.3412 0.3383 0.3508
SD 0.1075 0.0940 0.1098 0.0975 0.0987 0.0925

(c) Based on one hundred training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.4107 0.4062 0.3304 0.3700 0.2948 0.3833
Min 0.2127 0.1878 0.1758 0.1540 0.1268 0.1076

Average 0.3044 0.3147 0.2347 0.2526 0.2242 0.2436
SD 0.0456 0.0550 0.0413 0.0525 0.0489 0.0685

Above ground biomass Basal area Height

Above ground biomass Basal area Height

a Spectral reflectance value extraction based on strict pixel-based (SPB) approach 
b Spectral reflectance value extraction based on inversely weighted Euclidean distance (IWED) approach 

Above ground biomass Basal area Height

(a) Based on thirty training points

 
The best regression models from different numbers of training points (30, 50 and 100) 

were selected to undergo an accuracy assessment (Table 7), and coefficients and an intercept of 

each best predictive model of AGB, basal area, and height are summarized in Table 12.   Here 

again, models with higher R2 values did not result in higher accuracy levels.  For example, 

although an AGB estimation model with R2 of 0.7175 was derived based on thirty training points 

with the SPB approach, this model resulted in R2 of 0.1400 in the accuracy assessment.  On the 
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other hand, an AGB estimation model with an R2 of 0.4107 that was derived based on one 

hundred training points using the SPB approach, resulted in an R2 of 0.1259 in the accuracy 

assessment.  However, one AGB estimation model with R2 of 0.5602 that was derived based on 

fifty training points using the IWED approach in an R2 of 0.2438 in the accuracy assessment. 

 

Table 7.  The accuracy assessment of developed regression estimation models for the 
interior forest stands.  Any points located with in 30 m from stand edges were removed. 
5.4 Development and assessment of regression models for the hardwood stands 

Dependent      
variables

Number        
of            

training points
Approach a Model R2 b

Number        
of            

test points

Model 
assessment     

in R2 c

AGB 30 SPB 0.7175 50 0.1400
Basal Area 30 SPB 0.6807 50 0.0559

Height 30 SPB 0.6842 50 0.0074
AGB 30 IWED 0.7432 50 0.0979

Basal Area 30 IWED 0.6540 50 0.0432
Height 30 IWED 0.7218 50 0.0316
AGB 50 SPB 0.6795 50 0.1664

Basal Area 50 SPB 0.5703 50 0.1006
Height 50 SPB 0.5312 50 0.1097
AGB 50 IWED 0.5602 50 0.2438

Basal Area 50 IWED 0.4756 50 0.1675
Height 50 IWED 0.5803 50 0.0923
AGB 100 SPB 0.4107 50 0.1259

Basal Area 100 SPB 0.3304 50 0.0939
Height 100 SPB 0.2948 50 0.0065
AGB 100 IWED 0.4062 50 0.1701

Basal Area 100 IWED 0.3700 50 0.0830
Height 100 IWED 0.3833 50 0.1089

 

 

 

 

 

 

 

 

 

 

 

a Approach for spectral reflectance value extraction, strict pixel-based (SPB) and inversely weighted Euclidean 
distance (IWED). 

b R2 of regression model between spectral reflectance value and field measured AGB, basal area, or height from 
training points. 

c R2 between field measured AGB from test points and estimated AGB from regression model. 

5.4 Development and assessment of regression models for the hardwood stands 

Among the hundred twenty-two randomly located training points in hardwood stands, 

thirty and fifty randomly drawn points were used to develop estimation models, which predicted 
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total AGB (tons-c per 0.09 ha), total basal area (cm2 per 0.09 ha), and mean total tree height (m 

per 0.09 ha) in the hardwood stands.  Also, all points were at least 30 m away from stand edges.  

Regression models were developed using all nine independent variables, and field measured 

AGB, basal area, and tree height from training points.  A maximum, minimum, average and 

standard deviation of coefficient of determination (R2) of each model were again derived based 

on 30 sets of randomly drawn training points (Tables 8) (Appendix A-15 to -18).   

As noted before, lower numbers of training points resulted in larger variation among 30 

sets of randomly drawn training points.  For example, while the standard deviation of R2 for 

AGB estimation model based on thirty training points was 0.1194, the standard deviation of R2 

based on fifty training points was 0.0676, both based on the SPB approach.  Also, lower numbers 

of training points tended to have larger maximum, minimum and average R2.  This tendency 

seemed to be consistent for basal area and height estimation models.  Additionally, although the 

SPB and the IWED approaches did not result in very different models in general, some models 

such as height based on thirty training points were quite different.  Finally, the overall results 

regarding hardwood models showed R2 values lower than these estimation models from the 

entire study site and the interior forest stands by about 0.07-0.10 (Tables 4 and 6).   
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Table 8.  Coefficient of determination (R2) between nine independent variables and field 
measured AGB, basal area, and height based on (a) thirty, and (b) fifty training points in 
the hardwood stands.  Maximum, minimum, average and standard deviation (SD) were 
determined based on 30 different sets of those numbers of training points. 

 

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.6860 0.6490 0.7027 0.6252 0.5206 0.6802
Min 0.1278 0.1268 0.1162 0.1943 0.1242 0.1269

Average 0.2907 0.3664 0.2852 0.3728 0.3268 0.4367
SD 0.1194 0.1206 0.1262 0.1013 0.1170 0.1445

(b) Based on fifty training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.3746 0.4067 0.3948 0.4535 0.4206 0.4884
Min 0.1116 0.1542 0.1052 0.1728 0.1387 0.1925

Average 0.2350 0.2733 0.2254 0.2792 0.2697 0.3280
SD 0.0676 0.0701 0.0735 0.0768 0.0738 0.0767

Above ground biomass Basal area Height

a Spectral reflectance value extraction based on strict pixel-based (SPB) approach 
b Spectral reflectance value extraction based on inversely weighted Euclidean distance (IWED) approach 

Above ground biomass Basal area Height

(a) Based on thirty training points

 One again, the best regression models from different numbers of training points (30 and 

50) were selected to undergo an accuracy assessment (Table 9), and coefficients and an intercept 

of each best predictive model of AGB, basal area, and height were summarized in Table 12.  And 

once again, models with higher R2 values did not result in higher accuracy levels.  For example, 

the AGB estimation model with an R2 of 0.6860 was derived based on thirty training points with 

the SPB approach, this model resulted in R2 of 0.0137 in the accuracy assessment.   
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Table 9.  The accuracy assessment of developed regression estimation models for the 
interior hardwood stands.  Any points located with in 30 m from stand edges were 
removed. 

Dependent  
variables

Number of     
training points Approach (a) R2  of         

the model (b)
Number of  
test points

Model 
assessment     

in R2 (c)

AGB 30 SPB 0.6860 30 0.0137
Basal Area 30 SPB 0.7027 30 0.0084

Height 30 SPB 0.5206 30 0.0453
AGB 30 IWED 0.6490 30 0.0062

Basal Area 30 IWED 0.6252 30 0.0017
Height 30 IWED 0.6802 30 0.0629
AGB 50 SPB 0.3746 30 0.0806

Basal Area 50 SPB 0.3948 30 0.0285
Height 50 SPB 0.4206 30 0.0373
AGB 50 IWED 0.4067 30 0.0362

Basal Area 50 IWED 0.4535 30 0.0085
Height 50 IWED 0.4884 30 0.0427

 

 

a Approach for spectral reflectance value extraction, strict pixel-based (SPB) and inversely weighted Euclidean 
distance (IWED). 

b R2 of regression model between spectral reflectance value and field measured AGB, basal area, or height from 
training points. 

c R2 between field measured AGB from test points and estimated AGB from regression model. 

 
5.5 Development and assessment of regression models for the pine stands 

 From the one hundred-eleven randomly located training points in pine stands, thirty and 

fifty randomly drawn points were used to develop estimation models, which predicted total AGB 

(tons-c per 0.09 ha), total basal area (cm2 per 0.09 ha), and mean total tree height (m per 0.09 ha) 

in the pine stands.  Also, all points were at least 30 m away from stand edges.  Regression 

models were developed using all nine independent variables, and field measured AGB, basal 

area, and tree height from training points.  A maximum, minimum, average and standard 

deviation of coefficient of determination (R2) of each model were derived based on 30 sets of 

randomly drawn training points (Tables 10) (Appendix A-19 and -22).   
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As noted in earlier tests, lower numbers of training points resulted in larger variation 

among 30 sets of randomly drawn training points.  For example, while the standard deviation of 

R2 for AGB estimation model based on thirty training points was 0.1003, the standard deviation 

of R2 based on fifty training points was 0.0657, both based on the SPB approach.  Also, lower 

numbers of training points tended to have larger maximum, minimum, and average R2.  This 

tendency seemed to be consistent for basal area and height estimation models.  Additionally, the 

differences between the SPB and the IWED approaches were minimal.  At last, the results based 

on thirty training points seemed to be the lowest here, compared to regression models of the 

entire study site, the interior forest stands, the hardwood stands by about 0.12-0.20 in R2. 

 

Table 10.  Coefficient of determination (R2) between nine independent variables and field 
measured AGB, basal area, and height based on (a) thirty, and (b) fifty training points in 
the pine stands.  Maximum, minimum, average and standard deviation (SD) were 
determined based on 30 different sets of those numbers of training points. 

(a) Based on thirty training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.5691 0.5955 0.5844 0.6181 0.5337 0.6063
Min 0.1732 0.1832 0.2145 0.2119 0.2592 0.2333

Average 0.3718 0.3845 0.4108 0.4384 0.5306 0.5018
SD 0.1003 0.1053 0.0994 0.1053 0.1070 0.1176

(b) Based on fifty training points

SPB a IWED b SPB a IWED b SPB a IWED b

Max 0.4467 0.3756 0.4701 0.4521 0.5337 0.6063
Min 0.1696 0.1772 0.1725 0.2011 0.3372 0.2546

Average 0.3090 0.3015 0.3397 0.3485 0.4404 0.4467
SD 0.0657 0.0482 0.0670 0.0577 0.0558 0.0803

Above ground biomass Basal area Height

Above ground biomass Basal area Height

a Spectral reflectance value extraction based on strict pixel-based (SPB) approach 
b Spectral reflectance value extraction based on inversely weighted Euclidean distance (IWED) approach 
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 The best regression models were once again selected to undergo an accuracy assessment 

(Table 11), and coefficients and an intercept of each best predictive model of AGB, basal area, 

and height were summarized in Table 12.  The results were slightly different from other previous 

results.  Here, R2 values seemed to be independent from levels of R2 derived from the regression 

models.  The AGB estimation model with an R2 of 0.4467 was derived based on fifty training 

points with the SPB approach, this model resulted in R2 of 0.2058 in the accuracy assessment.  

This result was different from the case of the entire study site, the interior forest stands, and the 

hardwood stands. 

 

Table 11.  The accuracy assessment of developed regression estimation models for the 
interior pine stands.  Any points located with in 30 m from stand edges were removed. 

 

Dependent  
variables

Number       
of             

training points
Approach a Model R2 b

Number    
of         

tes t points

Model 
assessment     

in R2 c

AGB 30 SPB 0.5691 30 0.0162
Basal Area 30 SPB 0.5844 30 0.0057

Height 30 SPB 0.5337 30 0.0004
AGB 30 IW ED 0.5955 30 0.0006

Basal Area 30 IW ED 0.6181 30 0.0010
Height 30 IW ED 0.6063 30 0.0001
AGB 50 SPB 0.4467 30 0.2058

Basal Area 50 SPB 0.4701 30 0.0403
Height 50 SPB 0.5337 30 0.0133
AGB 50 IW ED 0.3756 30 0.0153

Basal Area 50 IW ED 0.4521 30 0.0020
Height 50 IW ED 0.6063 30 0.0001

a Approach for spectral reflectance value extraction, strict pixel-based (SPB) and inversely weighted Euclidean 
distance (IWED). 

b R2 of regression model between spectral reflectance value and field measured AGB, basal area, or height from 
training points. 

c R2 between field measured AGB from test points and estimated AGB from regression model. 
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Table 12.  Coefficients and an intercept of each best predictive model for AGB, basal area, 
and height estimations for (a) the entire study site, (b) the interior forest stands, (c) the 
hardwood stands, and (d) the pine stands 

(a) The entire study site

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 NDVI MVI5 MVI7 Intercept
AGB 41.99 -23.93 35.89 -0.77 14.43 -97.45 9.51 6.77 -27.28 348.41

Basal area 341.77 -457.60 422.62 372.77 -999.01 1098.68 72.71 -617.68 513.68 -42,460.13
Height 2.61 0.04 15.03 0.52 -0.32 -18.77 3.97 0.18 -6.71 240.59

(b) The interior forest stands

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 NDVI MVI5 MVI7 Intercept
AGB -19.66 31.04 -139.18 -0.98 23.10 61.42 -29.12 13.46 18.97 1,944.73

Basal area -859.63 -598.54 -2,781.85 -232.32 906.98 2,524.33 -887.33 482.01 832.64 22,293.15
Height -1.71 -1.44 4.81 -0.18 1.91 -7.14 1.00 0.59 -2.50 281.73

(c) The hardwood stands
.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 NDVI MVI5 MVI7 Intercept
AGB 45.65 -9.94 128.34 -53.29 38.06 4.61 41.59 20.81 7.97 -16,876.38

Basal area 1,849.52 -428.86 5,296.67 -1,838.75 793.61 958.04 1,683.07 446.99 596.82 -680,395.04
Height 6.12 -4.47 20.52 -6.79 7.14 -10.88 5.66 4.31 -2.78 -1,649.71

(d) The pine stands

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 NDVI MVI5 MVI7 Intercept
AGB -3.58 19.50 175.89 17.69 -56.20 -105.69 46.14 -31.90 -37.61 1,219.19

Basal area -470.68 902.49 -383.13 738.80 -963.13 -161.91 -26.28 -654.48 18.19 102,912.39
Height -2.17 3.15 -0.92 3.42 -6.95 9.80 0.22 -4.98 3.55 -29.17

Dependent 
variable

Coefficient

Dependent 
variable

Coefficient

Dependent 
variable

Coefficient

Dependent 
variable

Coefficient

 

 

5.6 Different sets of test points for the accuracy assessment 

 Because lower numbers of training points tended to result in regression models with 

higher R2 values, here, two different sets of test points were used to undergo an accuracy 

assessment.  This accuracy assessment was only taken for the entire study site for AGB 

estimation, and the best predictive model with R2 of 0.7774 derived from thirty training points 

with the SPB approach was selected.   
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Among eighty test points, 30 different sets of thirty and fifty random test points were 

assigned for the test points.  The results were presented in Table 13.  Here, one set of thirty 

random test points resulted in the highest R2 value of 0.1549 in the accuracy assessment, but two 

sets of thirty random test points resulted in an R2 ≤ 0.0001.  On the other hand, one set of fifty 

random test points resulted in smaller standard deviation of 0.0214.  However, the difference 

between thirty and fifty test points seemed to be small overall. 

 

Table 13.  The accuracy assessment for AGB estimation in the entire study site.  The 
selected model with R2 of 0.7774 was tested (a) 30 sets of thirty randomly drawn test points, 
and (b) 30 sets of fifty randomly drawn test points.   

(a) R2 in the accuracy assessment based on thirty test points

0.0994 0.0023 0.0767 0.0009 0.0059 0.0074
0.1044 0.0610 0.0009 0.0661  < 0.0001 0.1549 Maximum 0.1549
0.0047 0.0063 0.0017 0.0196 0.0000 0.0237 Minimum < 0.0001

 < 0.0001 0.0763 0.0096 0.0054 0.0184 0.0071 Average 0.0266
0.0215 0.0012 0.0168 0.0010 0.0040 0.0011 SD 0.0397

(b) R2 in the accuracy assessment based on fifty test points

0.0169 0.0138 0.0157 0.0227 0.0100 0.0130
0.0207 0.058 0.0234 0.0024 0.0253 0.0129 Maximum 0.0463
0.0463 0.0003 0.0393 0.0053 0.0391 0.0005 Minimum 0.0005
0.0068 0.0635 0.0048 0.0059 0.0384 0.0097 Average 0.0201
0.0035 0.0188 0.0224 0.0019 0.0581 0.0045 SD 0.0214
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5.7 Accuracy assessment using error matrix 

 The accuracy assessment noted using the coefficient of determination (R2) was low 

overall (e.g. the entire study area and the interior forest stands).  Here, as another way of 

accuracy assessment approach, error matrix was used to evaluate levels of accuracy in developed 

regression models (Table 14).  In general, error matrix is used for evaluating categorical data, 

such as land type classification.  Because of such limitation in error matrix, estimated AGB (ton-

c per 0.09 ha) were arbitrary organized into eight AGB classes as shown in Table 14.  For the 

entire study site, the best regression model with R2 of 0.7774 based on thirty training point with 

the SPB approach was used to estimate AGB.  For the interior forest stands, the best regression 

model with R2 of 0.7175 based on thirty training point with the SPB approach was used to 

estimate AGB.  For the hardwood stands, the best regression model with R2 of 0.6860 based on 

thirty training point with the SPB approach was used to estimate AGB.  At last, for the pine 

stands, the best regression model with R2 of 0.5961 based on thirty training point with the SPB 

approach was used to estimate AGB.  

 Overall accuracy in all four results was low.  Highest overall result had 47% in the pine 

stands while KHAT was only 0.1279 (Table 14-d).  Also, results of the interior forest stands 

(Table 14-b) and hardwood stands (Table 14-c) had a similar level in KHAT, but the entire study 

site had a KHAT of 0.0651 (Table 14-a).   
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Table 14.  The accuracy assessment using error matrices for (a) the entire study site, (b) the 
interior forest stands, (c) the hardwood stands, and (d) the pine stands.  Each best 
regression model to predict AGB in (a)-(d) was selected.   

(a) The entire study site

< 0 0 - 25 26 - 50 51 - 75 76 - 100 101 - 125 126 - 150 151 - 175 175 < Total       
Points

Users' 
Accuracy

< 0 0 1 1 1 0 0 0 0 0 3

0 - 25 0 10 4 2 3 0 0 0 0 19 5

26 - 50 0 13 4 4 0 0 2 0 0 23 1

51 - 75 0 4 8 8 3 0 1 1 0 25 3

76 - 100 0 0 2 2 1 0 1 0 0 6 1

101 - 125 0 0 1 1 0 0 0 0 0 2

126 - 150 0 1 0 1 0 0 0 0 0 2

151 - 175 0 0 0 0 0 0 0 0 0 0

175 < 0 0 0 0 0 0 0 0 0 0

Total Points 0 29 20 19 7 0 4 1 0 80

Producer's 
Accuracy 100% 34% 20% 42% 14% 100% 0% 0% 0%

Field measured AGB (ton-c per 0.09 ha) from test points
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(c) The hardwood stands
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CHAPTER 6 

Discussion 

 

6.1 The relationship between numbers of training points and model R2 values 

The study had an objective of testing regression analysis, as a possible method for 

estimating above ground biomass (AGB) in ton-c per 0.09 ha using a single Landsat Thematic 

Mapper 5 (Landsat TM) imagery.  The goal of this study was to be able to develop regression 

models that could provide users the ability to predict AGB, basal area and tree height with a 

reasonable degree of accuracy in the pine and hardwood forests typical of the Piedmont of 

Georgia.  A bootstrapping technique was used to draw a small set of training points from a larger 

set of potential training points, in order to determine: 

a) Whether a model with a high coefficient of determination (R2) value could be 

developed 

b) The repeatability of model quality, as expressed by the maximum, minimum, 

average, and standard deviation of R2 model values 

What I found was that there was so much variability in the large set of sample of training points 

that lower R2 values occurred as sample training points used in regression analysis process 

increased.  This was the case when estimates were made for all tree species over the entire study 

site, all tree species in the interior forest stands, hardwood stands, and pine stands.  Thus, one 

conclusion from this study is that with a smaller number of training points, a better fit with the 
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nine independent variables (six Landsat TM bands and three vegetation indices) could be 

obtained.   

 

6.2 The relationship between model R2 value and accuracy level 

The best AGB estimation model for all tree species over the entire study site, using thirty 

training points with the strict pixel-based (SPB) approach, had an R2 value of 0.7774, which by 

itself seems impressive.  However, this one model is simply the best of 30 different regression 

models developed from 30 different sets of thirty training points.  The average quality of the 

AGB estimation models for all tree species over the entire study site was not very good (R2 = 

0.4395), and the standard deviation was fairly wide (0.1185).  When subjected to model 

validation processes, I found that there was not much agreement between the best model and an 

independent set of test (validation) points.  In other words, accuracy levels of developed models 

were fairly low. I went further to select from the separate set of test points a subset of 30, and 

repeated this 30 times as well.  The agreement of the field measured AGB from these 

bootstrapped test points with the predicted AGB from the best overall model was not promising 

(e.g. very low).  Similarly, I selected from the separate set of test points a subset of 50, and 

repeated this 30 times.  Again, the agreement of the field measured AGB from these 

bootstrapped test points with the predicted AGB from the best overall model was not promising.  

Thus, numbers of test points used in the accuracy assessment may not have an effect on the 

model validation.  I then developed an error matrix using categories of AGB (predicted and field 

measured), and found low agreement as well.  Therefore, for the overall AGB model, while a 

few regression models seem to have high R2 values, each seems to fail validation tests.  Thus, my 

confidence in estimating AGB from a single Landsat TM image in the pine and hardwood stands 
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of the Piedmont of Georgia is low.  However, generally models that fit the training data better 

(higher R2 values) are often “overfitted” and have numerous variables that go into them, so that 

while trying to predict validation data, so one gets poor agreement.   

 

6.3 Impact of normality of independent variables and effective vegetation indices 

One reason for the low correspondence in actual vs. predicted AGB values may be the 

non-normality of the independent variables (Foody et al. 2001, Ingram et al. 2005).  I tested each 

independent variable for normality, and most failed based on Kolmogrov-Smirnov test values.  

Transformations (logarithmic and square root) were applied to the data, with the hope that 

normality could be achieved; however, normality tests indicated that the transformed data were 

non-normal as well.  In general, stepwise regression technique was used to try to bring only the 

statistically significant independent variables into each regression model.  In this study, 

selections of independent variables into regression models were based on Akaike’s Information 

Criterion (AIC), which allows non-significant variables to enter the model if the overall model fit 

to the data is better, but this process had little effect on overall quality of the regression models 

(See Appendix A).  This was a more efficient way of approaching the problem of developing 

regression model, than simply trying all possible combinations of variables.  However, from this 

approach, I found that the normality of independent variables did not seem to relate to levels of 

R2 in developed models.  For example, the regression model with R2 of 0.7774 was developed 

using four independent variables that had a normal distribution and five independent variables 

that had a non-normal distribution.  On the other hand, a regression model with R2 = 0.2288 was 

developed using five independent variables with a normal distribution and four independent 

variables with a non-normal distribution (Appendix C).  Therefore, future work in this area may 

 



55 

want to concentrate on logical combinations of independent variables, since some of them (e.g. 

NDVI) are correlated with or without normality.  In addition, while the independent variables 

were ones that were suggested from the literature, a second area of future work could involve the 

development of a new vegetation index that better discriminates the differences in hardwood and 

pine (in the infrared region), and better discriminates older and younger stands of trees (since this 

is an inherent problem for hardwood).  Additionally, some articles reported positive results, 

which estimated volume or AGB in conifer-dominated forestlands, such as in the Pacific 

Northwest (Ripple et al. 1991).  In general, those stand structures differs from typical southeast 

pine-dominated forestlands where canopy openings are larger.  Consequently, forest floor 

conditions would largely affect spectral information in the Landsat TM imagery.  For example, 

spectral information should differ greatly between recently applied prescribed burn stands and 

flourished understory vegetation (e.g. low shrubs) in pine stands.  Thus, a third area of future 

work could involve the development of a new approach that minimizes the effect of spectral 

reflectance information from forest floors.   

 

6.4 Impact of uncertainty of field points on the development of regression models 

Since field point (training and test) locations were randomly located, and did not 

necessarily correspond to the centers of Landsat pixels, an inversely weighted Euclidean distance 

(IWED) approach to arriving at spectral reflectance values was used, with the hope that it too 

would increase agreement between field measured and predicted AGB.  Since reflectance values 

from Landsat data may change considerably from one pixel to the next, I had hoped to capture 

this uncertainty with the IWED approach.  However, there is also some uncertainty in the GPS 

data that represent each point location (error in ± 5-10 m); therefore, it is not unreasonable to 
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assume that the results are very similar to the SPB approach, since the error may be randomly 

and uniformly distributed around each point location.   

 

6.5 Impact of stand edges on development of regression models 

Sensing that pixels near edges of stands, and perhaps containing more variability than 

interior pixels, may have contributed to the high disagreement between field measured and 

predicted AGB, I reduced the set of training points to contain only those significantly within the 

boundaries of forested areas.  The hypothesis was that these training points would allow the 

development of a higher quality AGB regression model, however this partitioning of the training 

data did not yield better regression models. 

 

6.6 Effect of mixed species stands on development of regression models 

When developing regression models to predict AGB in only hardwood stands or only 

pine stands, I found similar results: a few of the regression models seemed to have high quality 

(as demonstrated by high R2 values); the higher quality regression models were found with the 

lower number of training points; and validation tests failed in each case.  One extension of this 

work may be to build a better overall tree species AGB model by incorporating dummy variables 

in the stepwise regression process that represent pine and hardwood stands (Rahman et al. 2005).  

However, since individual pine and hardwood regression models were of limited success, the 

combined regression model will likely also be of mixed quality.  One concern here is the 

presence, typical of the Piedmont, of mixed pine-hardwood stands.  Although a judgment call 

was made regarding the placement of a training point in either the pine or hardwood category, 

some training points included both species and other types of vegetation species (e.g. understory 
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shrub and tree species), which may have led to lower quality regression models given the 

spectral differences between pines and hardwoods.  

  

6.7 Applicability of basal area and height estimations 

 A few of the basal area and height regression models that were developed seemed to have 

high quality (as demonstrated by high R2 values), and again the higher quality regression models 

were found with the lower number of training points, and validation tests failed in each case.  In 

the case of basal area models, since the Landsat TM data generally contain spectral reflectance 

values associated with the upper canopy, the spectral information related to live trees in the 

intermediate and suppressed canopy classes are not included, although these trees contribute to 

the basal area computations.  Therefore, I was not surprised that a basal area regression model 

would be difficult to develop.  However, the same problem is associated with AGB, which may 

further explain the mixed results from the AGB model development process. The correlation 

between tree height and spectral reflectance values would hypothetically be low (particularly for 

hardwoods); therefore, I was not expecting to develop very good relationships between the 

Landsat-derived data and tree heights. 

 

6.8 Scientific Contribution from this study 

 One aspect that may make this study different than others in the published literature is the 

size of the training points.  Here, a single pixel (or weighted average of nearest four pixels) was 

used as the training point.  In other studies (e.g. Holmgren et al.2000), larger training areas are 

used, and these could associate more variation in spectral reflectance values with actual forest 

measurements obtained in the field.  In addition, other studies spread their training sites across 
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the landscape in much more widespread manner.  If there were any anomalies in the Landsat data 

over the study area (e.g. periodic cloud influence), these were most likely insignificant in other 

studies, since larger areas were covered.  One extension of this work could be to aggregate 

training points contained within pre-defined management units, to arrive at a average forest 

condition for each unit.  Then, larger management units could be used as training sites, and the 

forested conditions within them could be associated with a set of pixels whose spectral values 

may vary over a typical range for the dominant tree species in each unit.  My hypothesis, 

although not tested here, is that this may allow the development of high quality regression 

models, and models that can also be validated successfully. 
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CHAPTER 7 

Conclusion 

 

Based on a single Landsat TM image, regression models were developed using nine 

independent variables (TM bands 1-5 and 7, and three vegetation indices) to predict AGB (ton-c 

per 0.09 ha), total basal area (cm2 per 0.09 ha) and mean tree height (m per 0.09 ha) in a typical 

southeast pine-hardwood stands.  One assumption was that spectral reflectance values in the 

independent variables and levels of field measured AGB were, to some degree, correlated, so 

that high predictive estimation models should be developed, but overall results did not support 

this assumption.   

One major finding in this study was lower numbers of training points may lead to 

develop higher R2 valued estimation models.  However, the regression models did not result in 

better accuracy levels than lower R2 valued models developed based on greater numbers of 

training points.  The lower R2 valued models may account for variability of AGB levels, as 

greater numbers of training points have more chance to cover larger areas.  Additionally, this 

tendency was very similar to the results from the basal area and height estimation studies.  

In statistics, data in regression analysis are assumed to have a normal distribution, but a 

normality test did not support that the independent variables derived from six TM bands and 

three vegetation indices were normally distributed.  The non-normal independent variables were 

applied logarithmic and square root transformations; however, levels of R2 in the associated 

models were very similar to regression models developed based on non-transformed independent 
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variables.  Also, as another finding, stepwise regression based on Akaike’s Information Criterion 

(AIC) indicated that normality and non-normality of independent variables do not have much 

impact on the development of high quality models.   

Additionally, two different approaches, a strict pixel-based (SPB) and an inversely 

weighted Euclidean distance (IWED), were performed for the extraction of spectral reflectance 

values from independent variables.  While each field point (training and test points) was 

determined based on a mapping grade GPS unit, it generally contains locational errors of ± 5-10 

m.  Also, each field point was not located in the center of each Landsat TM pixel because of they 

were randomly located.  Thus, the IWED approach was hoped to extract reasonably averaged 

spectral reflectance values to account for the four closest neighbor pixels from each field point; 

however, the results were very similar to the results based on the SPB approach.   

 Instead of estimating AGB for the entire study site, AGB was estimated separately for 

interior forest stands, hardwood stands, and pine stands.  In each case, all field points were 

located at least 30 m away from stand edges; thus, each point should have represented either the 

pure interior forest stands, the hardwood stands, or the pine stands.  However, the results were 

very similar to the results from the entire study site.  Basically, lower numbers of training points 

tended to develop higher valued R2 models, but these models showed lower accuracy levels in 

the accuracy assessment.   

 Finally, to estimate AGB with reasonable accuracy while using minimum required 

training points for development of high predictive models, this study established a large set of 

field points.  Unfortunately, levels of R2 values between independent variables and field 

measured AGB from training points were very low, as well as the accuracy levels.  

Consequently, this study did not arrive at a reasonable idea of the appropriate number of 
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minimum training points necessary for the development of highly predictive models.  Since few 

previous studies focused on AGB estimation in small forestlands, it may be necessary to 

determine the minimum reasonable study area size as well, then correlate the required minimum 

number of training points to study area size.   
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Appendix A 

 

Models were developed using a bootstrapping technique to draw a small set of training point from a larger set of potential training 
points.   

• For the entire study site, these 30 sets were randomly drawn from three hundred potential training points (1-8). 
• For the interior forest stands, these 30 sets were randomly drawn from two hundred potential training points (9-14). 
• For the hardwood stands, these 30 sets were randomly drawn from ninety-two potential training points (15-18). 
• For the pine stands, these 30 sets were randomly drawn from eighty-one potential training points (19-22). 

Also, models were developed based on the strict pixel based (SPB) or the inversely weighted Euclidean distance (IWED) approaches.  
Presented R2 values of each models were based on independent variables with non-transformation (AGB, BA, and Ht) or with 
logarithmic or square root transformation (LogAGB, LogBA, LogHt, SqrtAGB, Sqrt,BA, and SqrtHt).   
 

(2) The entire study site based on thirty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.2772 0.3160 0.2744 0.1567 0.2104 0.1594 0.3520 0.4315 0.3813
2 0.6098 0.5468 0.5649 0.5706 0.4982 0.5265 0.5459 0.5880 0.5331
3 0.5007 0.5166 0.5151 0.3708 0.4171 0.3856 0.2554 0.4397 0.3622
4 0.4507 0.4884 0.4778 0.3981 0.4404 0.4242 0.4013 0.6118 0.4681
5 0.5239 0.4582 0.4727 0.5301 0.4155 0.4316 0.5184 0.3772 0.4392
6 0.4814 0.5337 0.5082 0.4420 0.4892 0.4605 0.2812 0.3728 0.3394
7 0.4914 0.6425 0.5771 0.4845 0.6951 0.6288 0.2551 0.3807 0.3075
8 0.5509 0.6534 0.5884 0.4843 0.6388 0.5630 0.4494 0.4185 0.4187
9 0.3546 0.4091 0.3817 0.4139 0.4395 0.4242 0.4409 0.4789 0.4649
10 0.5270 0.4893 0.5294 0.4867 0.4253 0.5029 0.5167 0.2717 0.4096
11 0.2804 0.2578 0.2648 0.2515 0.2057 0.2366 0.1955 0.1901 0.2359
12 0.5396 0.5479 0.5458 0.5984 0.5868 0.5911 0.3232 0.2436 0.2804
13 0.4759 0.4180 0.4676 0.3833 0.3396 0.4067 0.3787 0.2419 0.3571
14 0.5826 0.5993 0.6114 0.5509 0.5834 0.5878 0.4529 0.6112 0.5500
15 0.4950 0.5015 0.4958 0.4492 0.4613 0.4507 0.5102 0.4813 0.4923
16 0.3725 0.3133 0.3380 0.3636 0.3518 0.3591 0.5442 0.5394 0.5593
17 0.4675 0.5245 0.4831 0.4110 0.5088 0.4459 0.3619 0.4723 0.4542
18 0.4660 0.4327 0.4314 0.4711 0.4344 0.4261 0.4474 0.5148 0.4955
19 0.1320 0.2024 0.1788 0.1364 0.2353 0.1893 0.2420 0.2937 0.2456
20 0.4584 0.4220 0.4529 0.4505 0.3874 0.4356 0.4552 0.4262 0.4319
21 0.3806 0.3975 0.3900 0.3321 0.3507 0.3433 0.2576 0.3059 0.2936
22 0.4099 0.4647 0.4359 0.3069 0.3826 0.3445 0.4143 0.4652 0.4324
23 0.5872 0.5435 0.5580 0.5938 0.4803 0.5302 0.4605 0.5045 0.5152
24 0.5051 0.4921 0.4933 0.4671 0.4957 0.4656 0.5280 0.5118 0.4997
25 0.6749 0.6317 0.6441 0.6183 0.5889 0.5954 0.4188 0.5652 0.5181
26 0.3051 0.3501 0.3578 0.3040 0.3364 0.3378 0.3150 0.3862 0.3358
27 0.3557 0.3264 0.3419 0.3410 0.2871 0.2978 0.5976 0.6173 0.5468
28 0.4935 0.4586 0.4745 0.4138 0.3763 0.3794 0.3112 0.3326 0.3149
29 0.6470 0.6304 0.6259 0.5880 0.5859 0.5625 0.7070 0.6288 0.6121
30 0.4989 0.5108 0.5151 0.4980 0.5149 0.5232 0.5639 0.5042 0.5115

Average 0.4632 0.4693 0.4665 0.4289 0.4388 0.4339 0.4167 0.4402 0.4269
SD 0.1179 0.1142 0.1116 0.1219 0.1221 0.1187 0.1224 0.1221 0.1012

(1) The entire study site based on thirty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.5401 0.5760 0.5815 0.5867 0.5687 0.5858 0.2525 0.2766 0.2713
2 0.3194 0.3570 0.3342 0.3267 0.3860 0.3348 0.4317 0.5352 0.4721
3 0.6863 0.6927 0.7359 0.5135 0.5627 0.5952 0.5092 0.5113 0.5425
4 0.4825 0.5789 0.5454 0.4039 0.5208 0.4487 0.2979 0.4236 0.3247
5 0.4918 0.4211 0.4570 0.4553 0.3592 0.3918 0.5037 0.4438 0.4345
6 0.3775 0.2813 0.2988 0.4021 0.3135 0.3212 0.5711 0.4875 0.4598
7 0.4094 0.3415 0.3774 0.4404 0.3641 0.4127 0.4265 0.4938 0.4269
8 0.2708 0.2457 0.2547 0.2951 0.3121 0.3063 0.3147 0.3049 0.2963
9 0.5033 0.4572 0.4403 0.4198 0.4169 0.3911 0.3199 0.4095 0.3127

10 0.4016 0.3849 0.3488 0.4052 0.3772 0.3114 0.4900 0.4901 0.3833
11 0.5542 0.5633 0.5602 0.5840 0.5729 0.5801 0.4029 0.4126 0.4085
12 0.2288 0.2897 0.3272 0.2095 0.2437 0.3216 0.3549 0.4280 0.3669
13 0.4894 0.4470 0.4661 0.4136 0.4186 0.4167 0.3696 0.3943 0.3822
14 0.4644 0.2721 0.3574 0.4704 0.2969 0.3824 0.4468 0.3660 0.4079
15 0.3309 0.3750 0.3536 0.4033 0.4468 0.4212 0.5229 0.5404 0.4948
16 0.4431 0.4989 0.4107 0.4502 0.5105 0.4144 0.3872 0.3292 0.2806
17 0.2836 0.2370 0.2122 0.2439 0.2159 0.1461 0.1525 0.3001 0.1377
18 0.7774 0.7036 0.7417 0.6159 0.5352 0.5747 0.5716 0.3201 0.4810
19 0.5590 0.5511 0.5855 0.5641 0.5093 0.5663 0.6000 0.5284 0.5443
20 0.4919 0.4686 0.4799 0.4522 0.4407 0.4445 0.4240 0.4024 0.3784
21 0.4464 0.4331 0.4624 0.4379 0.4522 0.4702 0.5234 0.4900 0.5056
22 0.4795 0.4426 0.4573 0.5205 0.4219 0.4479 0.2523 0.2530 0.2511
23 0.3120 0.3594 0.3754 0.3303 0.3330 0.3754 0.4555 0.4870 0.5025
24 0.4181 0.4158 0.4248 0.4859 0.5008 0.5006 0.4320 0.4389 0.4462
25 0.4437 0.4634 0.4521 0.4079 0.4204 0.4101 0.5066 0.5406 0.5818
26 0.4021 0.4063 0.4036 0.3740 0.3798 0.3740 0.3297 0.2668 0.2969
27 0.3795 0.3732 0.3727 0.3839 0.3858 0.3857 0.2453 0.2921 0.2671
28 0.2792 0.3107 0.3016 0.2119 0.2550 0.2462 0.4155 0.5229 0.4982
29 0.4796 0.5915 0.5324 0.5253 0.6109 0.5525 0.5169 0.5083 0.4038
30 0.4382 0.4187 0.4472 0.4319 0.4240 0.4572 0.6830 0.6794 0.7200

Average 0.4395 0.4319 0.4366 0.4255 0.4185 0.4196 0.4237 0.4292 0.4093
SD 0.1185 0.1223 0.1237 0.1033 0.1032 0.1058 0.1200 0.1032 0.1189
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(3) The entire study site based on fifty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.4172 0.4160 0.3798 0.3620 0.3995 0.2220 0.2915 0.2200 0.2577
2 0.1856 0.1808 0.1278 0.1294 0.1308 0.1272 0.4233 0.2313 0.3158
3 0.3641 0.3520 0.3539 0.3121 0.3164 0.1695 0.2745 0.2212 0.2687
4 0.2234 0.2405 0.2303 0.1727 0.2068 0.1776 0.2733 0.1646 0.2559
5 0.2105 0.1818 0.2014 0.1496 0.0945 0.2026 0.1874 0.2179 0.0682
6 0.5206 0.5389 0.5214 0.4022 0.4669 0.4168 0.4648 0.4863 0.4511
7 0.2069 0.1436 0.1550 0.2508 0.1483 0.2646 0.4410 0.2486 0.4265
8 0.3905 0.3223 0.3415 0.3700 0.3179 0.3319 0.3376 0.3308 0.2863
9 0.4793 0.4771 0.4657 0.4502 0.4753 0.4019 0.3915 0.4718 0.5600
10 0.1652 0.1865 0.1517 0.1482 0.1825 0.2133 0.5213 0.3271 0.3574
11 0.2981 0.2266 0.2372 0.2752 0.1969 0.2832 0.5681 0.3525 0.5713
12 0.4231 0.3817 0.3790 0.3468 0.3185 0.2965 0.6327 0.2568 0.5528
13 0.2992 0.3545 0.3082 0.2533 0.3141 0.2652 0.4477 0.2862 0.4700
14 0.2974 0.3134 0.3058 0.2915 0.3121 0.4056 0.6116 0.3996 0.6052
15 0.2703 0.2593 0.2777 0.2283 0.2170 0.3329 0.4752 0.3022 0.5950
16 0.4040 0.4197 0.4119 0.2813 0.2775 0.2370 0.5239 0.2574 0.5177
17 0.3009 0.3202 0.3161 0.2213 0.2533 0.3313 0.4516 0.3404 0.4825
18 0.3484 0.3067 0.3039 0.2637 0.2612 0.1799 0.3227 0.2073 0.2987
19 0.1996 0.2293 0.2399 0.1637 0.2075 0.3760 0.3858 0.2661 0.4297
20 0.4074 0.4010 0.3911 0.4037 0.3899 0.4119 0.4904 0.4449 0.4959
21 0.0947 0.1126 0.0939 0.0466 0.0769 0.2006 0.2982 0.2753 0.2782
22 0.3020 0.3230 0.3190 0.3226 0.3507 0.2058 0.3665 0.2216 0.3271
23 0.2609 0.3154 0.2971 0.1657 0.2538 0.2569 0.4273 0.3475 0.3786
24 0.2052 0.1873 0.1933 0.1255 0.1416 0.2859 0.3102 0.3073 0.2669
25 0.2965 0.3550 0.3382 0.2207 0.2971 0.3472 0.3261 0.3645 0.3116
26 0.2986 0.2939 0.2887 0.3240 0.3136 0.3946 0.4665 0.4709 0.3429
27 0.4597 0.4399 0.4578 0.4739 0.4331 0.4740 0.5383 0.4421 0.4849
28 0.3052 0.2789 0.2893 0.3032 0.2434 0.2963 0.6434 0.3132 0.6163
29 0.3575 0.3339 0.3521 0.3286 0.3305 0.4293 0.5914 0.4106 0.5909
30 0.2470 0.2612 0.2982 0.1728 0.2354 0.1222 0.4222 0.2272 0.4123

Average 0.3080 0.3051 0.3009 0.2653 0.2721 0.2887 0.4302 0.3138 0.4092
SD 0.1007 0.1008 0.1006 0.1040 0.1029 0.0964 0.1174 0.0899 0.1359

(4) The entire study site based on fifty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.3781 0.4165 0.3854 0.3013 0.3572 0.3125 0.5039 0.5603 0.5256
2 0.3363 0.2960 0.2959 0.3038 0.2581 0.2475 0.3412 0.3290 0.3069
3 0.2039 0.2997 0.2376 0.1730 0.2373 0.1889 0.4024 0.4624 0.4211
4 0.4691 0.3641 0.3885 0.4201 0.2886 0.3142 0.3640 0.2521 0.2455
5 0.3187 0.3239 0.3223 0.3152 0.3296 0.3229 0.3131 0.3390 0.3168
6 0.3638 0.3101 0.3305 0.3158 0.2847 0.2953 0.3492 0.2353 0.2599
7 0.3364 0.3249 0.3249 0.3173 0.2773 0.2695 0.3366 0.3233 0.2651
8 0.2322 0.2267 0.2191 0.2487 0.2199 0.2198 0.3704 0.2443 0.2606
9 0.3964 0.3080 0.3300 0.3673 0.3058 0.2877 0.3960 0.4558 0.3512
10 0.2293 0.2184 0.2205 0.2339 0.2311 0.2317 0.2233 0.2412 0.2254
11 0.2889 0.2883 0.2862 0.2480 0.2661 0.2551 0.2154 0.3000 0.2456
12 0.4178 0.4205 0.4328 0.3797 0.4024 0.4074 0.5867 0.5372 0.5583
13 0.3239 0.3451 0.3341 0.2835 0.3009 0.2779 0.4515 0.4844 0.4427
14 0.3800 0.3899 0.3962 0.3914 0.4078 0.4007 0.3883 0.3929 0.3788
15 0.2269 0.2035 0.2269 0.2348 0.1841 0.2203 0.3156 0.2610 0.3240
16 0.3979 0.3420 0.3474 0.3705 0.3110 0.3170 0.4351 0.3359 0.2899
17 0.3422 0.3211 0.3263 0.2812 0.2537 0.2587 0.3237 0.3189 0.3219
18 0.2601 0.2406 0.2437 0.2396 0.2369 0.2393 0.2089 0.2008 0.1751
19 0.3030 0.3018 0.3127 0.2527 0.2610 0.2606 0.1853 0.1979 0.1881
20 0.3899 0.4117 0.3696 0.3512 0.3914 0.3418 0.1335 0.2409 0.1912
21 0.3553 0.3474 0.3623 0.3592 0.3920 0.3922 0.5099 0.4735 0.4673
22 0.4280 0.4572 0.4364 0.3468 0.3982 0.3667 0.2035 0.3223 0.2511
23 0.2789 0.3136 0.3031 0.2705 0.3264 0.3119 0.2329 0.4992 0.3831
24 0.2973 0.3270 0.3170 0.2697 0.3327 0.3129 0.2402 0.2629 0.2459
25 0.3249 0.4138 0.4065 0.3155 0.3883 0.3781 0.3534 0.4053 0.3267
26 0.1333 0.1492 0.1203 0.1301 0.1224 0.1112 0.1039 0.1115 0.1137
27 0.4067 0.3225 0.3153 0.3565 0.2704 0.2363 0.2322 0.3505 0.2334
28 0.2680 0.3110 0.2948 0.2465 0.2923 0.2746 0.2894 0.3147 0.3147
29 0.4048 0.4702 0.4459 0.2666 0.3242 0.3046 0.2535 0.3070 0.2825
30 0.5501 0.4616 0.5059 0.5516 0.4573 0.4910 0.5147 0.4826 0.5017

Average 0.3347 0.3309 0.3279 0.3047 0.3036 0.2950 0.3259 0.3414 0.3138
SD 0.0862 0.0775 0.0802 0.0799 0.0742 0.0750 0.1183 0.1119 0.1074

 

 

(5) The entire study site based on one hundred training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.3573 0.3663 0.3856 0.3453 0.3113 0.3396 0.2925 0.2058 0.2081
2 0.2527 0.2532 0.2506 0.2318 0.2341 0.2287 0.2398 0.2355 0.2103
3 0.2007 0.1914 0.1974 0.1971 0.1587 0.1757 0.2592 0.1577 0.1837
4 0.2006 0.1792 0.1797 0.1507 0.1313 0.1247 0.2243 0.2547 0.2232
5 0.3269 0.3091 0.3148 0.2485 0.2278 0.2344 0.3015 0.3085 0.3057
6 0.2738 0.2787 0.2789 0.2058 0.2058 0.2015 0.2376 0.2404 0.2281
7 0.3014 0.2769 0.2859 0.2332 0.2209 0.2281 0.1465 0.1295 0.1125
8 0.1531 0.1363 0.1396 0.1462 0.1121 0.1145 0.2105 0.2372 0.2004
9 0.2934 0.3129 0.2818 0.2842 0.3096 0.2806 0.3109 0.3264 0.2865
10 0.2102 0.2065 0.2040 0.1896 0.1847 0.1818 0.2584 0.2574 0.2327
11 0.2678 0.2664 0.2724 0.1965 0.1807 0.1900 0.2118 0.2047 0.1914
12 0.2301 0.2445 0.2365 0.1740 0.1846 0.1779 0.1851 0.1779 0.1714
13 0.2152 0.2111 0.2129 0.2280 0.2121 0.2152 0.2530 0.2645 0.2440
14 0.3310 0.3190 0.3282 0.2791 0.2708 0.2790 0.2510 0.2350 0.2398
15 0.3073 0.3017 0.3059 0.2696 0.2602 0.2631 0.2279 0.2042 0.2057
16 0.2490 0.2551 0.2547 0.2099 0.2033 0.2021 0.2231 0.1849 0.1880
17 0.2022 0.1760 0.1788 0.1314 0.0952 0.0952 0.2223 0.1336 0.1317
18 0.3062 0.3099 0.3100 0.2498 0.2496 0.2511 0.2146 0.2199 0.2120
19 0.2597 0.2576 0.2534 0.2099 0.2072 0.1989 0.2995 0.2840 0.2781
20 0.1949 0.2155 0.1937 0.1585 0.1644 0.1610 0.2131 0.2226 0.1935
21 0.1990 0.1977 0.1914 0.1768 0.1729 0.1639 0.1866 0.1868 0.1792
22 0.2849 0.2153 0.2160 0.2493 0.1718 0.1712 0.1995 0.0909 0.0990
23 0.2907 0.3019 0.2889 0.2492 0.2731 0.2467 0.2672 0.2943 0.2636
24 0.1480 0.1314 0.1376 0.1119 0.0807 0.0895 0.2367 0.2040 0.2102
25 0.2071 0.1793 0.1890 0.1683 0.1487 0.1445 0.1751 0.1752 0.1562
26 0.4187 0.4254 0.4222 0.3551 0.3582 0.3483 0.3533 0.3109 0.2891
27 0.2794 0.2497 0.2465 0.2244 0.2146 0.1972 0.2471 0.1939 0.1711
28 0.3661 0.3876 0.3833 0.3265 0.3495 0.3417 0.2912 0.2789 0.2795
29 0.2263 0.2232 0.2133 0.1819 0.1720 0.1565 0.1989 0.2201 0.1743
30 0.2330 0.2308 0.2305 0.2405 0.2139 0.2174 0.2878 0.2321 0.2363

Average 0.2596 0.2536 0.2528 0.2208 0.2093 0.2073 0.2409 0.2224 0.2102
SD 0.0636 0.0698 0.0701 0.0598 0.0683 0.0672 0.0458 0.0558 0.0510

(6) The entire study site based on one hundred training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.1433 0.1515 0.1559 0.1295 0.1385 0.1411 0.1542 0.1669 0.1615
2 0.1878 0.1895 0.1914 0.1875 0.1953 0.1991 0.1791 0.1813 0.1894
3 0.1699 0.1860 0.1857 0.1099 0.1391 0.1262 0.1228 0.1696 0.1572
4 0.1252 0.1447 0.1316 0.0754 0.0878 0.0741 0.1571 0.1819 0.1442
5 0.1998 0.1839 0.1866 0.1774 0.1474 0.1601 0.1953 0.1971 0.1993
6 0.2054 0.1898 0.2003 0.1947 0.1910 0.1982 0.2706 0.2530 0.2574
7 0.2178 0.2335 0.2245 0.1897 0.1978 0.1912 0.2318 0.2694 0.2486
8 0.3237 0.3362 0.3338 0.2290 0.2538 0.2464 0.2299 0.2889 0.2561
9 0.2887 0.2733 0.2706 0.2726 0.2386 0.2327 0.3243 0.2700 0.2560
10 0.1427 0.1527 0.1500 0.1069 0.1310 0.1230 0.1714 0.1719 0.1690
11 0.2305 0.2575 0.2533 0.1671 0.1853 0.1834 0.1451 0.1717 0.1600
12 0.2525 0.2535 0.2573 0.2651 0.2665 0.2705 0.3353 0.3255 0.3430
13 0.1800 0.1594 0.1621 0.1465 0.1193 0.1200 0.2697 0.2404 0.2118
14 0.1354 0.1470 0.1323 0.1058 0.1109 0.0951 0.1840 0.2168 0.1988
15 0.1798 0.1733 0.1722 0.1380 0.1248 0.1275 0.1799 0.1615 0.1598
16 0.2137 0.2120 0.2120 0.2027 0.1825 0.1892 0.2862 0.2695 0.2480
17 0.1996 0.2152 0.2119 0.1599 0.1775 0.1689 0.2666 0.3052 0.2815
18 0.2139 0.1973 0.2124 0.1559 0.1296 0.1435 0.1619 0.1647 0.1421
19 0.1329 0.1402 0.1355 0.0817 0.0952 0.0884 0.1138 0.1611 0.1335
20 0.2472 0.2210 0.2277 0.1935 0.1764 0.1826 0.2754 0.2897 0.2773
21 0.2147 0.2130 0.2144 0.1409 0.1375 0.1385 0.1909 0.1804 0.1843
22 0.1683 0.1987 0.1841 0.1807 0.1945 0.1800 0.2812 0.2292 0.2313
23 0.1687 0.1731 0.1689 0.1780 0.1761 0.1773 0.2003 0.2036 0.2030
24 0.1795 0.1990 0.1811 0.1709 0.1818 0.1611 0.3184 0.2470 0.2446
25 0.1720 0.1910 0.1820 0.1088 0.1381 0.1223 0.1286 0.1786 0.1453
26 0.2728 0.2927 0.2893 0.1765 0.2240 0.2053 0.1840 0.2559 0.2225
27 0.2728 0.2927 0.2893 0.1765 0.2240 0.2053 0.1840 0.2559 0.2225
28 0.3204 0.2892 0.3128 0.2790 0.2443 0.2605 0.2630 0.2671 0.2627
29 0.2034 0.1718 0.1898 0.2030 0.1601 0.1821 0.2559 0.2109 0.2054
30 0.2564 0.2731 0.2702 0.2135 0.2256 0.2181 0.0996 0.1188 0.1096

Average 0.2073 0.2104 0.2096 0.1706 0.1731 0.1704 0.2120 0.2201 0.2075
SD 0.0533 0.0519 0.0539 0.0518 0.0479 0.0494 0.0659 0.0525 0.0537
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(8) The entire study site based on two hundred training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.1492 0.1489 0.1456 0.1022 0.0981 0.0944 0.1273 0.1294 0.1103
2 0.2095 0.2139 0.2126 0.1778 0.1832 0.1804 0.1676 0.1547 0.1494
3 0.2156 0.2224 0.2188 0.1711 0.1836 0.1759 0.1973 0.1935 0.1858
4 0.2690 0.2682 0.2684 0.2408 0.2425 0.2417 0.2242 0.2230 0.2175
5 0.1599 0.1675 0.1635 0.1255 0.1259 0.1230 0.1534 0.1662 0.1482
6 0.2473 0.2399 0.2466 0.2098 0.1842 0.1967 0.2318 0.1629 0.1780
7 0.2315 0.2394 0.2399 0.1827 0.1888 0.1857 0.1869 0.1996 0.1923
8 0.1388 0.1401 0.1393 0.1111 0.1062 0.1087 0.1538 0.1524 0.1487
9 0.1925 0.2146 0.2067 0.1437 0.1628 0.1527 0.1393 0.1649 0.1461
10 0.1843 0.1910 0.1888 0.1494 0.1536 0.1523 0.1736 0.1806 0.1758
11 0.1329 0.1471 0.1411 0.0954 0.1079 0.1016 0.0988 0.1399 0.1145
12 0.1594 0.1761 0.1697 0.1093 0.1243 0.1162 0.1175 0.1524 0.1312
13 0.1974 0.2140 0.2057 0.1656 0.1732 0.1681 0.2076 0.1967 0.1955
14 0.2527 0.2449 0.2455 0.2035 0.1927 0.1913 0.1864 0.1626 0.1549
15 0.1945 0.1955 0.1964 0.1561 0.1602 0.1607 0.1852 0.1808 0.1801
16 0.1601 0.1678 0.1650 0.1300 0.1326 0.1318 0.1706 0.1694 0.1682
17 0.1976 0.2043 0.2059 0.1547 0.1625 0.1657 0.1981 0.1811 0.1882
18 0.1884 0.1875 0.1863 0.1420 0.1312 0.1299 0.1921 0.1818 0.1576
19 0.1495 0.1539 0.1504 0.1073 0.1070 0.1027 0.1082 0.1193 0.1075
20 0.1803 0.1917 0.1841 0.1415 0.1389 0.1350 0.1446 0.1447 0.1337
21 0.1844 0.1908 0.1872 0.1390 0.1331 0.1308 0.1360 0.1400 0.1297
22 0.2124 0.2258 0.2243 0.1559 0.1693 0.1639 0.1330 0.1435 0.1385
23 0.1664 0.1663 0.1665 0.1245 0.1239 0.1239 0.1571 0.1430 0.1363
24 0.1494 0.1547 0.1542 0.1020 0.1060 0.1076 0.0958 0.1036 0.1008
25 0.1743 0.1905 0.1845 0.1493 0.1723 0.1658 0.1591 0.1817 0.1709
26 0.1882 0.1857 0.1894 0.1452 0.1365 0.1410 0.1472 0.1413 0.1364
27 0.1554 0.1570 0.1551 0.1193 0.1195 0.1178 0.1348 0.1558 0.1451
28 0.1851 0.1958 0.1911 0.1585 0.1722 0.1625 0.1536 0.1855 0.1626
29 0.2362 0.2427 0.2420 0.2074 0.2098 0.2101 0.2084 0.2076 0.1940
30 0.1923 0.1892 0.1894 0.1977 0.1985 0.1900 0.1841 0.1878 0.1898

Average 0.1885 0.1942 0.1921 0.1506 0.1533 0.1509 0.1624 0.1648 0.1563
SD 0.0346 0.0333 0.0343 0.0364 0.0360 0.0361 0.0357 0.0271 0.0297

(7) The entire study site based on two hundred training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.1800 0.1758 0.1558 0.1345 0.1345 0.1190 0.1364 0.1177 0.0948
2 0.1939 0.1881 0.1873 0.1487 0.1489 0.1443 0.1149 0.1172 0.1081
3 0.1345 0.1340 0.1334 0.0989 0.0965 0.0941 0.1418 0.1371 0.1318
4 0.2072 0.2063 0.1851 0.1460 0.1556 0.1396 0.1661 0.1626 0.1564
5 0.1605 0.1493 0.1505 0.1096 0.1006 0.0975 0.1480 0.1565 0.1355
6 0.2023 0.1873 0.1850 0.1550 0.1334 0.1320 0.1490 0.1248 0.1261
7 0.1996 0.1766 0.1802 0.1559 0.1385 0.1375 0.1259 0.0980 0.0937
8 0.1701 0.1826 0.1735 0.1335 0.1460 0.1394 0.1525 0.1229 0.1256
9 0.1413 0.1441 0.1401 0.1060 0.1061 0.1074 0.1142 0.1007 0.1009
10 0.2043 0.1952 0.1933 0.1291 0.1244 0.1201 0.1255 0.1041 0.1041
11 0.1813 0.1849 0.1737 0.1301 0.1348 0.1295 0.0971 0.1000 0.0869
12 0.2030 0.1955 0.1870 0.1449 0.1406 0.1351 0.1303 0.1151 0.1059
13 0.2289 0.2207 0.2269 0.1724 0.1710 0.1735 0.1338 0.1323 0.1341
14 0.1325 0.1315 0.1311 0.0882 0.0872 0.0908 0.1476 0.1431 0.1425
15 0.1965 0.1940 0.1905 0.1564 0.1543 0.1555 0.1497 0.1404 0.1335
16 0.1646 0.1490 0.1553 0.1195 0.1027 0.1072 0.1480 0.1178 0.1321
17 0.2053 0.1988 0.1960 0.1403 0.1226 0.1211 0.1711 0.1359 0.1294
18 0.1724 0.1485 0.1589 0.1174 0.0971 0.1001 0.1204 0.0955 0.0920
19 0.1759 0.1570 0.1602 0.1106 0.1032 0.1038 0.1224 0.1040 0.1091
20 0.2514 0.2174 0.2237 0.1923 0.1489 0.1540 0.1460 0.1234 0.1279
21 0.1942 0.1851 0.1885 0.1670 0.1429 0.1470 0.2072 0.1681 0.1618
22 0.1816 0.1638 0.1678 0.1433 0.1155 0.1182 0.1547 0.1331 0.1222
23 0.1776 0.1780 0.1766 0.1162 0.1194 0.1188 0.1609 0.1538 0.1532
24 0.1231 0.1206 0.1207 0.0842 0.0825 0.0840 0.0996 0.0928 0.0985
25 0.1522 0.1342 0.1438 0.0999 0.0819 0.0893 0.1064 0.0803 0.0855
26 0.1649 0.1535 0.1584 0.1183 0.1067 0.1091 0.1146 0.0978 0.1005
27 0.1467 0.1477 0.1410 0.1136 0.1102 0.1059 0.1390 0.1384 0.1354
28 0.1878 0.1797 0.1730 0.1244 0.1197 0.1165 0.1249 0.1216 0.1178
29 0.1318 0.1240 0.1132 0.0832 0.0825 0.0738 0.1002 0.1114 0.0851
30 0.2182 0.2172 0.2221 0.2012 0.1875 0.1961 0.2393 0.2011 0.2037

Average 0.1795 0.1713 0.1698 0.1313 0.1232 0.1220 0.1396 0.1249 0.1211
SD 0.0307 0.0288 0.0288 0.0296 0.0272 0.0272 0.0304 0.0262 0.0266

 

(9) The interior forest stands based on thirty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.4293 0.4313 0.4330 0.3677 0.0326 0.3415 0.2526 0.2675 0.2647
2 0.2837 0.2534 0.2568 0.3238 0.0532 0.2419 0.5207 0.5572 0.4823
3 0.4517 0.4775 0.4689 0.4069 0.2159 0.4173 0.5614 0.5952 0.5998
4 0.6527 0.6143 0.6336 0.5733 0.0781 0.5672 0.5831 0.5261 0.5606
5 0.3872 0.4062 0.3952 0.3154 0.0452 0.3196 0.2825 0.2958 0.2882
6 0.6393 0.6057 0.6352 0.5497 0.3174 0.5436 0.5310 0.5395 0.5272
7 0.5192 0.4873 0.4982 0.4642 0.0511 0.4348 0.3287 0.3214 0.3259
8 0.6184 0.5542 0.5854 0.6429 0.1372 0.5721 0.6030 0.3216 0.4477
9 0.4094 0.3846 0.3827 0.3803 0.2747 0.4126 0.6420 0.6460 0.6373
10 0.1988 0.2719 0.2233 0.1563 0.0363 0.1736 0.1939 0.2280 0.2116
11 0.3545 0.3060 0.3298 0.2869 0.0790 0.2445 0.5188 0.5120 0.5255
12 0.4655 0.4215 0.4617 0.4323 0.0403 0.4249 0.4669 0.5179 0.5039
13 0.4863 0.4975 0.4900 0.4155 0.1593 0.4306 0.4965 0.5123 0.5127
14 0.5029 0.5988 0.5648 0.4661 0.0490 0.4940 0.5843 0.5837 0.5680
15 0.5077 0.5395 0.5220 0.4863 0.2413 0.5105 0.3932 0.4555 0.4228
16 0.7175 0.6965 0.7196 0.6807 0.0094 0.6750 0.6710 0.5834 0.6176
17 0.2706 0.2900 0.2320 0.2976 0.0905 0.2755 0.3119 0.4552 0.3114
18 0.4187 0.4881 0.4519 0.3645 0.1186 0.3936 0.4504 0.4661 0.4516
19 0.3340 0.3628 0.3493 0.2965 0.0163 0.3128 0.4449 0.4454 0.4560
20 0.4113 0.3409 0.4010 0.3297 0.0146 0.3205 0.4597 0.4148 0.4219
21 0.3408 0.3264 0.3269 0.2976 0.0572 0.2713 0.2899 0.1940 0.2310
22 0.4733 0.4914 0.4817 0.4728 0.2806 0.4794 0.6842 0.7044 0.7038
23 0.4192 0.3795 0.3678 0.3325 0.0738 0.3037 0.3390 0.2182 0.2779
24 0.4556 0.3982 0.4243 0.4868 0.0041 0.4403 0.4271 0.3611 0.4028
25 0.2658 0.2010 0.2325 0.2354 0.0045 0.2040 0.3679 0.3347 0.3531
26 0.2425 0.2553 0.2576 0.2433 0.0143 0.2625 0.3514 0.2962 0.3204
27 0.4151 0.4259 0.4508 0.4338 0.2058 0.4670 0.5889 0.6588 0.6360
28 0.5965 0.5797 0.5918 0.5869 0.0140 0.5890 0.5364 0.5880 0.5285
29 0.2721 0.2673 0.2683 0.1970 0.0196 0.1966 0.3617 0.3071 0.3283
30 0.5509 0.4729 0.5026 0.4993 0.0191 0.4502 0.6107 0.5746 0.5627

Average 0.4363 0.4275 0.4313 0.4007 0.0918 0.3923 0.4618 0.4494 0.4494
SD 0.1303 0.1264 0.1321 0.1297 0.0933 0.1302 0.1328 0.1440 0.1344

(10) The interior forest stands based on thirty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.7432 0.7685 0.7447 0.6540 0.7093 0.6874 0.5481 0.5958 0.5715
2 0.4324 0.4780 0.4726 0.3892 0.4421 0.4459 0.3609 0.2458 0.2976
3 0.5051 0.5627 0.5408 0.5138 0.5669 0.5431 0.5384 0.5197 0.4992
4 0.5197 0.5037 0.5121 0.5260 0.5057 0.5149 0.5585 0.5100 0.5223
5 0.4927 0.4104 0.4460 0.4499 0.3863 0.4057 0.2322 0.2285 0.2300
6 0.3987 0.3985 0.3978 0.4129 0.3985 0.4015 0.6621 0.6069 0.6299
7 0.6321 0.5592 0.6137 0.6282 0.6043 0.6318 0.7114 0.7920 0.7723
8 0.4257 0.4386 0.4821 0.4013 0.4213 0.4342 0.4353 0.4217 0.4422
9 0.4612 0.4817 0.4757 0.4342 0.4844 0.4635 0.5741 0.5301 0.5522
10 0.3485 0.3379 0.3507 0.3593 0.3520 0.3594 0.2509 0.2205 0.1840
11 0.3840 0.4690 0.4276 0.3127 0.3817 0.3480 0.1930 0.3150 0.2561
12 0.4395 0.4614 0.4276 0.3790 0.4172 0.3815 0.4040 0.3745 0.3929
13 0.3285 0.3358 0.3303 0.2880 0.3163 0.3046 0.3649 0.3875 0.3803
14 0.3841 0.3939 0.3753 0.3590 0.4336 0.3829 0.3222 0.2705 0.2577
15 0.4215 0.4031 0.4562 0.4237 0.4299 0.4453 0.4253 0.4399 0.4422
16 0.5195 0.5527 0.5438 0.5362 0.5879 0.5635 0.6263 0.7276 0.6508
17 0.4119 0.3902 0.4030 0.3252 0.2567 0.2837 0.4286 0.3724 0.4064
18 0.6014 0.6234 0.6165 0.6041 0.6200 0.6139 0.7032 0.6813 0.6901
19 0.3918 0.4025 0.3971 0.3603 0.3585 0.3558 0.3995 0.4063 0.3794
20 0.2840 0.3218 0.3070 0.2107 0.2549 0.2365 0.2340 0.3161 0.2891
21 0.2979 0.3298 0.3077 0.2759 0.2901 0.2744 0.2860 0.3152 0.2894
22 0.4018 0.4515 0.4285 0.2659 0.3219 0.2919 0.2825 0.3123 0.2982
23 0.4986 0.4611 0.4548 0.4026 0.3636 0.3694 0.1590 0.1061 0.1287
24 0.3983 0.4317 0.4218 0.3896 0.4433 0.4301 0.4081 0.4109 0.4117
25 0.4086 0.3783 0.3829 0.3627 0.3774 0.3708 0.6114 0.6749 0.6668
26 0.5388 0.4793 0.5055 0.4574 0.3488 0.3971 0.5165 0.4998 0.5448
27 0.3237 0.2749 0.2681 0.2841 0.2143 0.1968 0.3677 0.3272 0.2560
28 0.5258 0.5870 0.5616 0.5479 0.5756 0.5470 0.3184 0.2094 0.2304
29 0.4999 0.5217 0.5002 0.3937 0.4476 0.4067 0.7218 0.7310 0.7217
30 0.4879 0.5023 0.5050 0.5177 0.5699 0.5469 0.7085 0.7499 0.7197

Average 0.4502 0.4570 0.4552 0.4155 0.4293 0.4211 0.4451 0.4433 0.4371
SD 0.1005 0.1028 0.1022 0.1110 0.1204 0.1188 0.1688 0.1847 0.1821
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(11) The interior forest stands based on fifty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.2532 0.2541 0.2346 0.2135 0.2066 0.1782 0.3032 0.2219 0.1858
2 0.6149 0.6449 0.6504 0.5497 0.6178 0.5969 0.4260 0.5997 0.4878
3 0.2868 0.2803 0.2825 0.2064 0.2006 0.2062 0.1917 0.1927 0.1917
4 0.1614 0.1866 0.1773 0.1458 0.1504 0.1447 0.1632 0.1397 0.1534
5 0.2805 0.3051 0.3007 0.2404 0.3041 0.2845 0.2801 0.3038 0.2719
6 0.3474 0.3444 0.3442 0.3636 0.3380 0.3327 0.3944 0.3510 0.3067
7 0.3922 0.3770 0.3991 0.3113 0.3283 0.3411 0.3438 0.2692 0.3234
8 0.3182 0.3158 0.3158 0.3185 0.3196 0.3159 0.4346 0.4065 0.4057
9 0.4296 0.4562 0.4464 0.3924 0.4269 0.4105 0.3750 0.4640 0.4208
10 0.4539 0.4961 0.4832 0.4392 0.5034 0.4796 0.3346 0.3370 0.3236
11 0.3880 0.4174 0.4168 0.3771 0.4148 0.4088 0.3038 0.2494 0.2407
12 0.3304 0.3529 0.3430 0.2652 0.2912 0.2817 0.2607 0.2103 0.2311
13 0.2987 0.3262 0.3114 0.2252 0.2467 0.2311 0.3396 0.2987 0.3129
14 0.4266 0.4128 0.4212 0.3902 0.3663 0.3778 0.5312 0.5158 0.5147
15 0.3795 0.4165 0.3969 0.3758 0.4140 0.3835 0.4586 0.4202 0.4163
16 0.5151 0.5123 0.5528 0.4855 0.5405 0.5494 0.3981 0.4872 0.4582
17 0.3694 0.3587 0.3514 0.3580 0.3367 0.3269 0.4927 0.3582 0.3494
18 0.3289 0.3628 0.3491 0.2567 0.3006 0.2775 0.2324 0.2642 0.2240
19 0.4599 0.4451 0.4559 0.3726 0.3663 0.3775 0.2474 0.2808 0.2631
20 0.4261 0.3658 0.3935 0.4141 0.3321 0.3760 0.4838 0.4733 0.4854
21 0.3506 0.3578 0.3542 0.3181 0.3341 0.3264 0.2719 0.2959 0.2896
22 0.3423 0.3333 0.2735 0.2172 0.2542 0.1791 0.2807 0.3210 0.2104
23 0.2991 0.3768 0.3637 0.2140 0.3151 0.2963 0.2814 0.4837 0.4227
24 0.6795 0.4983 0.6413 0.5703 0.4309 0.5617 0.4399 0.3522 0.3409
25 0.3402 0.3422 0.3373 0.3012 0.3106 0.2815 0.3252 0.2919 0.2582
26 0.4339 0.4005 0.4108 0.4064 0.3383 0.3455 0.4332 0.4279 0.3665
27 0.2796 0.3002 0.2879 0.1825 0.1843 0.1732 0.2264 0.1554 0.1640
28 0.4426 0.5342 0.5187 0.4517 0.5686 0.5413 0.4088 0.4371 0.4244
29 0.2124 0.2057 0.2070 0.1775 0.1696 0.1693 0.1684 0.1389 0.1376
30 0.3818 0.4232 0.4055 0.3139 0.3463 0.3311 0.3190 0.3269 0.3201

Average 0.3741 0.3801 0.3809 0.3285 0.3419 0.3362 0.3383 0.3358 0.3167
SD 0.1075 0.0973 0.1115 0.1098 0.1136 0.1215 0.0987 0.1173 0.1066

(12) The interior forest stands based on fifty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.3027 0.2999 0.3021 0.2240 0.2142 0.2213 0.2352 0.1968 0.2130
2 0.4534 0.4658 0.4645 0.4278 0.4355 0.4304 0.2909 0.3152 0.2857
3 0.5602 0.5878 0.5753 0.4756 0.5218 0.4968 0.3573 0.3242 0.2909
4 0.3421 0.3363 0.3419 0.2863 0.2517 0.2605 0.2816 0.3139 0.2882
5 0.4370 0.4798 0.4653 0.3864 0.4414 0.4212 0.3177 0.2706 0.2676
6 0.3332 0.3474 0.3365 0.3005 0.3041 0.3010 0.3189 0.3271 0.3236
7 0.1940 0.1982 0.1962 0.1494 0.1717 0.1516 0.4459 0.5076 0.4338
8 0.1857 0.2125 0.2040 0.1073 0.1339 0.1215 0.1711 0.1711 0.1535
9 0.3657 0.4229 0.4210 0.3836 0.4677 0.4505 0.5803 0.6236 0.5886
10 0.3995 0.4019 0.3987 0.3266 0.3128 0.3183 0.2751 0.2450 0.2457
11 0.3358 0.3498 0.3433 0.3019 0.3410 0.3234 0.3855 0.4151 0.3972
12 0.4568 0.4527 0.4736 0.4571 0.4710 0.4781 0.4248 0.5437 0.4943
13 0.4908 0.4928 0.4925 0.4265 0.4190 0.4235 0.3920 0.3732 0.3718
14 0.3240 0.3083 0.3066 0.3284 0.2767 0.2933 0.4619 0.4059 0.4320
15 0.3896 0.3025 0.3337 0.3113 0.2140 0.2472 0.4102 0.3229 0.3592
16 0.4480 0.4631 0.4578 0.4694 0.4859 0.4883 0.4244 0.3473 0.3678
17 0.4611 0.4623 0.4613 0.3862 0.3773 0.3779 0.3277 0.3199 0.3153
18 0.5321 0.5225 0.5384 0.4567 0.4671 0.4627 0.4466 0.5344 0.4747
19 0.2687 0.2418 0.2550 0.2037 0.1786 0.1912 0.2608 0.2051 0.2089
20 0.3579 0.3272 0.3388 0.3677 0.3268 0.3341 0.3243 0.3287 0.2931
21 0.2628 0.2674 0.2606 0.2488 0.2392 0.2394 0.2301 0.2257 0.2095
22 0.4366 0.3447 0.4125 0.3802 0.3667 0.3992 0.3485 0.3460 0.3788
23 0.4654 0.4999 0.4895 0.3816 0.4295 0.4122 0.4064 0.4412 0.4199
24 0.4993 0.4813 0.4809 0.4577 0.4292 0.4252 0.3956 0.4078 0.3701
25 0.3205 0.2941 0.3011 0.2634 0.2341 0.2419 0.2103 0.1862 0.1803
26 0.3589 0.3795 0.3722 0.3149 0.3454 0.3352 0.2878 0.2741 0.2631
27 0.3470 0.3822 0.3778 0.2125 0.2755 0.2593 0.2941 0.3220 0.3024
28 0.4561 0.4203 0.4308 0.3629 0.3353 0.3336 0.2891 0.2642 0.2422
29 0.4602 0.5002 0.4942 0.4086 0.4565 0.4479 0.4562 0.4323 0.4321
30 0.4793 0.4970 0.4680 0.4297 0.4393 0.4019 0.4726 0.3904 0.3908

Average 0.3908 0.3914 0.3931 0.3412 0.3454 0.3430 0.3508 0.3460 0.3331
SD 0.0940 0.1002 0.0976 0.0975 0.1080 0.1038 0.0925 0.1106 0.1013

 

(13) The interior forest stands based on one hundred training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.2921 0.2770 0.2835 0.2271 0.2138 0.2216 0.2345 0.2541 0.2497
2 0.3514 0.3371 0.3211 0.2766 0.2640 0.2690 0.2503 0.2179 0.2355
3 0.2909 0.2135 0.2385 0.2338 0.1773 0.2194 0.1660 0.0941 0.1182
4 0.2765 0.2381 0.2626 0.1989 0.1676 0.1904 0.2778 0.2037 0.2651
5 0.3269 0.2723 0.2714 0.2754 0.2161 0.2415 0.2428 0.1813 0.1822
6 0.3135 0.3205 0.3171 0.2622 0.2668 0.2596 0.2921 0.2813 0.2680
7 0.2903 0.3158 0.3092 0.2140 0.2549 0.2397 0.1926 0.2254 0.1852
8 0.3327 0.3700 0.3649 0.2099 0.2460 0.2304 0.2115 0.2778 0.2088
9 0.2772 0.2172 0.2578 0.1867 0.1568 0.1780 0.1616 0.1223 0.1314
10 0.2980 0.2286 0.2647 0.2210 0.1701 0.2041 0.1308 0.0862 0.1024
11 0.2571 0.2041 0.2498 0.1923 0.1538 0.1910 0.2210 0.1524 0.2274
12 0.2127 0.2166 0.2140 0.1758 0.1775 0.1762 0.1734 0.1664 0.1624
13 0.2330 0.2391 0.2347 0.1936 0.2060 0.1989 0.1268 0.1373 0.1283
14 0.3385 0.3096 0.3250 0.2420 0.2381 0.2436 0.2385 0.2226 0.2325
15 0.3690 0.3708 0.3726 0.2848 0.2911 0.2869 0.2325 0.2258 0.2034
16 0.4107 0.3628 0.4216 0.3230 0.3055 0.3499 0.2727 0.2071 0.2780
17 0.3149 0.2684 0.3069 0.2508 0.2200 0.2523 0.2503 0.2085 0.2489
18 0.3569 0.3136 0.3401 0.2767 0.2453 0.2613 0.2435 0.2180 0.2250
19 0.3349 0.2800 0.3127 0.2331 0.2014 0.2202 0.2346 0.1875 0.1945
20 0.2978 0.2852 0.2853 0.2361 0.2354 0.2413 0.1524 0.1151 0.1360
21 0.3104 0.2992 0.3045 0.2208 0.2286 0.2321 0.1662 0.1601 0.1399
22 0.2836 0.2946 0.2900 0.2109 0.2230 0.2124 0.2726 0.1961 0.1854
23 0.2883 0.3144 0.3092 0.2521 0.3085 0.2902 0.2918 0.3329 0.2908
24 0.3595 0.3291 0.3436 0.2997 0.2740 0.2877 0.2948 0.3089 0.3161
25 0.2673 0.2387 0.2376 0.2003 0.1869 0.1894 0.2004 0.1763 0.1674
26 0.3871 0.3727 0.3900 0.3304 0.3338 0.3417 0.2555 0.2176 0.2481
27 0.2723 0.2309 0.2527 0.1992 0.1704 0.2007 0.2428 0.1902 0.2299
28 0.2548 0.2623 0.2602 0.1978 0.2064 0.1909 0.2534 0.2743 0.1842
29 0.2594 0.2840 0.2757 0.1821 0.2151 0.2027 0.1735 0.1887 0.1792
30 0.2751 0.2368 0.2797 0.2348 0.2151 0.2391 0.2683 0.2246 0.2690

Average 0.3044 0.2834 0.2966 0.2347 0.2256 0.2354 0.2242 0.2018 0.2064
SD 0.0456 0.0507 0.0491 0.0413 0.0470 0.0441 0.0489 0.0592 0.0556

(14) The interior forest stands based on one hundred training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.3405 0.3536 0.3457 0.2574 0.2686 0.2594 0.2936 0.2139 0.2119
2 0.3133 0.3229 0.3158 0.2635 0.2723 0.2602 0.3146 0.2370 0.2208
3 0.3329 0.3570 0.3493 0.2899 0.3174 0.3012 0.3102 0.3710 0.3423
4 0.2919 0.2904 0.2806 0.2469 0.2470 0.2329 0.2467 0.2156 0.1730
5 0.4032 0.3912 0.3966 0.3700 0.3600 0.3596 0.3102 0.2871 0.2715
6 0.3538 0.3797 0.3679 0.2884 0.3265 0.2932 0.2585 0.4027 0.2959
7 0.3270 0.3429 0.3396 0.2814 0.3039 0.2924 0.3833 0.3779 0.3553
8 0.3512 0.3594 0.3540 0.2928 0.3074 0.2970 0.2979 0.2580 0.2603
9 0.2714 0.2801 0.2682 0.1998 0.2182 0.2052 0.2141 0.2606 0.2450
10 0.3091 0.3279 0.3220 0.2575 0.2840 0.2714 0.2096 0.1948 0.1606
11 0.4026 0.3993 0.4050 0.3109 0.3159 0.3131 0.2440 0.2598 0.2574
12 0.4062 0.3811 0.3935 0.3103 0.2994 0.3026 0.2254 0.2359 0.2307
13 0.2692 0.2703 0.2682 0.2113 0.2154 0.2067 0.3155 0.2567 0.2479
14 0.2055 0.2123 0.2122 0.1540 0.1579 0.1513 0.1706 0.1396 0.1458
15 0.2604 0.2509 0.2605 0.1918 0.2025 0.1993 0.1739 0.1731 0.1685
16 0.2704 0.2856 0.2774 0.2289 0.2465 0.2328 0.3674 0.3580 0.3084
17 0.2404 0.2428 0.2517 0.1669 0.1901 0.1828 0.1690 0.2403 0.2146
18 0.1878 0.1826 0.1859 0.1596 0.1473 0.1416 0.2291 0.2256 0.2168
19 0.2864 0.2774 0.2831 0.2121 0.2156 0.2125 0.1985 0.2219 0.2151
20 0.3113 0.3145 0.3122 0.2579 0.2547 0.2533 0.1614 0.1615 0.1592
21 0.3289 0.3331 0.3308 0.2834 0.2853 0.2786 0.2776 0.2362 0.2183
22 0.2649 0.2764 0.2727 0.2000 0.2219 0.2095 0.2200 0.2631 0.2452
23 0.2813 0.2772 0.2781 0.2006 0.1990 0.1981 0.1076 0.0945 0.0970
24 0.3565 0.3447 0.3474 0.2808 0.2491 0.2513 0.3213 0.2797 0.2508
25 0.3515 0.3719 0.3691 0.2427 0.2750 0.2594 0.1269 0.1594 0.1433
26 0.3029 0.2932 0.3014 0.2253 0.2318 0.2267 0.1714 0.1923 0.1851
27 0.3712 0.3691 0.3710 0.3065 0.3288 0.3229 0.1913 0.2217 0.2241
28 0.3235 0.3161 0.3161 0.2833 0.2665 0.2657 0.2739 0.2326 0.2160
29 0.3863 0.3971 0.3962 0.3247 0.3455 0.3320 0.2548 0.2891 0.2423
30 0.3406 0.3337 0.3473 0.2801 0.2851 0.2852 0.2695 0.2938 0.2787

Average 0.3147 0.3178 0.3173 0.2526 0.2613 0.2533 0.2436 0.2451 0.2267
SD 0.0550 0.0553 0.0552 0.0525 0.0539 0.0530 0.0685 0.0699 0.0582
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(15) The hardwood stands based on thirty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.2726 0.2721 0.3263 0.3627 0.3404 0.3935 0.3166 0.3957 0.4191
2 0.1278 0.1280 0.1267 0.1288 0.1301 0.1266 0.3087 0.2840 0.2944
3 0.2608 0.1372 0.2307 0.2281 0.1070 0.1820 0.4456 0.3916 0.4284
4 0.2254 0.3202 0.2796 0.2718 0.3387 0.3112 0.2461 0.3635 0.3176
5 0.1659 0.1726 0.1727 0.1646 0.1622 0.1658 0.4044 0.3961 0.4003
6 0.4651 0.3569 0.4814 0.3898 0.3352 0.4649 0.5297 0.5079 0.5446
7 0.2201 0.1867 0.2299 0.1947 0.1635 0.2187 0.1242 0.1204 0.1766
8 0.6860 0.5743 0.7088 0.7027 0.6351 0.7204 0.5655 0.4769 0.5854
9 0.2631 0.2200 0.2558 0.2991 0.2693 0.2727 0.2589 0.2633 0.2605
10 0.2435 0.2160 0.2432 0.2173 0.2144 0.2151 0.1461 0.1496 0.1481
11 0.4186 0.4436 0.4382 0.3111 0.3453 0.3321 0.2837 0.4480 0.3698
12 0.3222 0.3093 0.3144 0.3172 0.2810 0.2968 0.4141 0.4533 0.4317
13 0.2074 0.2432 0.2005 0.1619 0.1940 0.1473 0.1925 0.2234 0.1794
14 0.2644 0.2349 0.2420 0.2272 0.2139 0.2093 0.2304 0.2760 0.2507
15 0.2569 0.2863 0.2910 0.2083 0.2368 0.2372 0.3053 0.3028 0.3213
16 0.3158 0.4593 0.4095 0.3154 0.4487 0.4015 0.3703 0.4250 0.4161
17 0.2727 0.2504 0.2634 0.2523 0.2269 0.2399 0.2918 0.2560 0.2823
18 0.2649 0.2071 0.2385 0.2141 0.1721 0.1931 0.2669 0.2443 0.2529
19 0.1318 0.1034 0.1291 0.1162 0.0989 0.1175 0.2791 0.3088 0.3611
20 0.1705 0.1986 0.1872 0.2033 0.2314 0.2221 0.3440 0.3305 0.3408
21 0.4988 0.5034 0.5093 0.5702 0.5730 0.5731 0.5774 0.4811 0.5669
22 0.3712 0.3501 0.3184 0.3602 0.3397 0.3374 0.3229 0.3090 0.2876
23 0.3740 0.3493 0.3656 0.3830 0.3736 0.3811 0.4250 0.4573 0.4621
24 0.1513 0.1688 0.2716 0.1730 0.1872 0.2716 0.3726 0.3544 0.4220
25 0.3713 0.3835 0.3829 0.4322 0.4362 0.4412 0.4381 0.4733 0.4447
26 0.2312 0.2878 0.2597 0.2398 0.2669 0.2530 0.2607 0.2670 0.2672
27 0.2883 0.2943 0.2850 0.2928 0.2994 0.2865 0.2192 0.2439 0.2185
28 0.2573 0.1570 0.2655 0.1984 0.1499 0.2162 0.4141 0.3508 0.4182
29 0.2229 0.2637 0.2520 0.2617 0.2514 0.2662 0.1371 0.1288 0.1363
30 0.4001 0.3709 0.3836 0.3594 0.3293 0.3369 0.3121 0.2836 0.2869

Average 0.2907 0.2816 0.3021 0.2852 0.2784 0.2944 0.3268 0.3322 0.3431
SD 0.1194 0.1144 0.1207 0.1262 0.1271 0.1319 0.1170 0.1069 0.1189

(16) The hardwood stands based on thirty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.1889 0.2094 0.2250 0.1943 0.1944 0.2095 0.3420 0.3469 0.0054
2 0.6490 0.6132 0.6485 0.6252 0.5798 0.6072 0.6013 0.5563 0.2218
3 0.3565 0.3688 0.3597 0.3477 0.3602 0.3645 0.1269 0.1228 0.0074
4 0.2817 0.2567 0.2901 0.3121 0.2771 0.3291 0.2613 0.2088 0.0030
5 0.2112 0.1997 0.3100 0.3500 0.2633 0.3729 0.5941 0.5093 0.0014
6 0.2122 0.2784 0.2932 0.2712 0.3003 0.3098 0.4527 0.3891 0.0122
7 0.3901 0.3776 0.4190 0.3747 0.3529 0.4228 0.3543 0.3288 0.0000
8 0.2493 0.3190 0.2779 0.2741 0.3106 0.2981 0.2003 0.3256 0.0599
9 0.5079 0.4156 0.5580 0.4323 0.3232 0.4488 0.6051 0.5494 0.1316
10 0.3067 0.4016 0.5343 0.4063 0.4403 0.5843 0.4006 0.3909 0.0651
11 0.3388 0.3451 0.2986 0.3120 0.3085 0.2514 0.5339 0.5302 0.0584
12 0.4474 0.4095 0.4774 0.4253 0.3584 0.4293 0.3586 0.3636 0.0002
13 0.3917 0.3199 0.3737 0.3927 0.3276 0.4046 0.5622 0.4721 0.0349
14 0.3015 0.2281 0.2783 0.3003 0.2496 0.2895 0.3575 0.3146 0.0129
15 0.3116 0.2356 0.3351 0.3126 0.2530 0.3373 0.4416 0.4508 0.0029
16 0.4537 0.4132 0.3917 0.4612 0.4295 0.4179 0.3696 0.3692 0.0650
17 0.3934 0.4133 0.3305 0.4361 0.4413 0.3474 0.3949 0.4110 0.1128
18 0.2856 0.2237 0.1246 0.2262 0.2549 0.3238 0.2514 0.2635 0.2325
19 0.1268 0.1850 0.1596 0.2068 0.2424 0.2160 0.4095 0.4327 0.0720
20 0.3528 0.2818 0.2407 0.3222 0.2568 0.2158 0.3801 0.3531 0.0000
21 0.4416 0.3696 0.4302 0.4878 0.3527 0.4549 0.1865 0.3858 0.0344
22 0.4691 0.4720 0.5529 0.4138 0.4219 0.5257 0.4138 0.4564 0.1439
23 0.3068 0.3337 0.3644 0.3364 0.3388 0.3538 0.4913 0.4711 0.0104
24 0.5769 0.5403 0.5639 0.5381 0.5342 0.5371 0.6967 0.7651 0.0332
25 0.5096 0.4963 0.4433 0.4804 0.4680 0.4096 0.6096 0.5863 0.0086
26 0.5096 0.4963 0.4433 0.4804 0.4680 0.4096 0.6096 0.5863 0.0086
27 0.4080 0.4905 0.4462 0.4291 0.4691 0.4371 0.4881 0.4908 0.0649
28 0.3799 0.4815 0.3988 0.4021 0.4796 0.3889 0.6427 0.6765 0.0080
29 0.2226 0.2586 0.2698 0.2269 0.2612 0.2726 0.4973 0.5305 0.0683
30 0.4096 0.4677 0.4749 0.4062 0.4896 0.4799 0.4691 0.4947 0.1161

Average 0.3664 0.3634 0.3771 0.3728 0.3602 0.3816 0.4367 0.4377 0.0532
SD 0.1206 0.1131 0.1244 0.1013 0.1002 0.1036 0.1445 0.1341 0.0633

 

(17) The hardwood stands based on fifty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.1292 0.0825 0.1025 0.1052 0.0514 0.0773 0.1496 0.0991 0.1162
2 0.2809 0.2813 0.2864 0.2174 0.2363 0.2269 0.3551 0.2972 0.3986
3 0.2144 0.2054 0.2311 0.2093 0.1942 0.2179 0.1387 0.2029 0.2214
4 0.2198 0.2087 0.2160 0.2018 0.1865 0.1904 0.3010 0.2734 0.2780
5 0.2640 0.1861 0.2620 0.2385 0.1888 0.2207 0.2085 0.2070 0.2423
6 0.1692 0.1810 0.1958 0.1480 0.1653 0.1658 0.2915 0.2991 0.3036
7 0.2240 0.2447 0.2478 0.1893 0.2321 0.2002 0.4206 0.3968 0.4156
8 0.3461 0.3164 0.3467 0.3513 0.2836 0.3310 0.2828 0.2762 0.2891
9 0.2599 0.2617 0.2523 0.1915 0.1983 0.1814 0.2265 0.2670 0.2251
10 0.2156 0.1923 0.2312 0.2227 0.1881 0.2121 0.2637 0.2275 0.2767
11 0.1116 0.1635 0.1690 0.1595 0.2425 0.2089 0.1962 0.3169 0.3592
12 0.3080 0.2481 0.3084 0.3109 0.2312 0.2867 0.3471 0.2763 0.3288
13 0.1763 0.2037 0.2012 0.2400 0.2344 0.2449 0.3720 0.3197 0.3572
14 0.1376 0.1323 0.1921 0.1315 0.1302 0.1688 0.2290 0.1987 0.2605
15 0.2707 0.2861 0.2825 0.2851 0.2976 0.2940 0.2240 0.2255 0.2264
16 0.3746 0.2656 0.4285 0.3948 0.3229 0.4255 0.3896 0.3902 0.4390
17 0.1224 0.1392 0.1854 0.1075 0.1185 0.1553 0.2193 0.2616 0.2475
18 0.2059 0.1662 0.2609 0.1827 0.1961 0.2059 0.2092 0.1426 0.2080
19 0.2766 0.3044 0.3011 0.2859 0.2907 0.2963 0.2606 0.2965 0.2796
20 0.2831 0.2070 0.2826 0.2089 0.1857 0.2039 0.1894 0.1712 0.1785
21 0.2425 0.1532 0.2189 0.2101 0.1554 0.1866 0.3392 0.2712 0.3180
22 0.2340 0.1405 0.2257 0.2186 0.1341 0.1976 0.2471 0.2689 0.2740
23 0.2216 0.1866 0.2196 0.2027 0.2036 0.2021 0.2302 0.2294 0.2227
24 0.3440 0.2897 0.3181 0.3263 0.2596 0.2921 0.2716 0.2857 0.2788
25 0.1815 0.0634 0.1987 0.1367 0.0815 0.1766 0.2066 0.1608 0.3273
26 0.2502 0.2253 0.2616 0.2617 0.2516 0.2646 0.3170 0.3025 0.3158
27 0.3378 0.3167 0.3198 0.3750 0.3649 0.3543 0.3686 0.3934 0.3616
28 0.2456 0.2726 0.3156 0.2439 0.2757 0.2812 0.1994 0.3094 0.2850
29 0.1942 0.1405 0.1897 0.1910 0.1653 0.1774 0.2744 0.2431 0.2403
30 0.2089 0.1935 0.3008 0.2130 0.2162 0.2637 0.3616 0.3344 0.4580

Average 0.2350 0.2086 0.2517 0.2254 0.2094 0.2303 0.2697 0.2648 0.2911
SD 0.0676 0.0669 0.0641 0.0735 0.0695 0.0689 0.0738 0.0709 0.0770

(18) The hardwood stands based on fifty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.3409 0.3346 0.3405 0.3454 0.3194 0.3339 0.3486 0.3361 0.3437
2 0.2669 0.2637 0.2654 0.2370 0.2303 0.2339 0.3715 0.3234 0.3514
3 0.3699 0.3753 0.3719 0.3923 0.3707 0.3831 0.2786 0.3265 0.3054
4 0.1561 0.2093 0.1731 0.1782 0.2116 0.1891 0.3413 0.3927 0.3741
5 0.1542 0.1429 0.1539 0.2094 0.1832 0.2063 0.1925 0.1643 0.1798
6 0.2174 0.2205 0.2201 0.1728 0.1585 0.1690 0.2606 0.2560 0.2812
7 0.2548 0.2278 0.2355 0.2615 0.2372 0.2502 0.2615 0.2477 0.2546
8 0.2472 0.2681 0.2607 0.1885 0.2043 0.1989 0.3128 0.3323 0.3258
9 0.2792 0.2811 0.2857 0.2992 0.2797 0.2962 0.3623 0.3078 0.3395
10 0.2798 0.4381 0.3491 0.3053 0.3967 0.3451 0.4884 0.5606 0.5504
11 0.3324 0.2911 0.3353 0.2836 0.2121 0.2699 0.4107 0.3299 0.4040
12 0.4044 0.4323 0.4181 0.3728 0.3864 0.3754 0.2777 0.3210 0.3083
13 0.2929 0.2298 0.2641 0.3009 0.2314 0.2703 0.4493 0.4133 0.4291
14 0.2396 0.2039 0.2255 0.2115 0.1832 0.1970 0.2740 0.2290 0.2523
15 0.2887 0.2751 0.2802 0.3104 0.2780 0.2944 0.3432 0.3279 0.3318
16 0.3215 0.2939 0.3094 0.3387 0.3101 0.3249 0.3095 0.3585 0.3266
17 0.4067 0.3860 0.3975 0.4535 0.4240 0.4398 0.3278 0.3237 0.3224
18 0.3057 0.3315 0.3209 0.3116 0.3032 0.3121 0.2962 0.4141 0.3420
19 0.1789 0.2269 0.2163 0.2560 0.2337 0.2611 0.3943 0.3925 0.4451
20 0.3042 0.3554 0.3311 0.2751 0.2864 0.2832 0.4581 0.4607 0.4734
21 0.1825 0.1955 0.1910 0.2056 0.2374 0.2244 0.2215 0.2744 0.2483
22 0.3299 0.4241 0.3954 0.3900 0.4696 0.4489 0.3387 0.4740 0.4039
23 0.3374 0.3310 0.3611 0.3916 0.3528 0.4013 0.4194 0.3902 0.4300
24 0.2471 0.2422 0.2530 0.2063 0.1878 0.2051 0.3201 0.3171 0.3205
25 0.2330 0.2384 0.2400 0.2188 0.2118 0.2167 0.2667 0.3024 0.2839
26 0.2533 0.2333 0.2460 0.2292 0.1999 0.2127 0.3801 0.4576 0.4146
27 0.3667 0.3786 0.3991 0.3828 0.3569 0.3935 0.3667 0.3616 0.3785
28 0.2110 0.2046 0.2085 0.2426 0.2400 0.2439 0.1995 0.2004 0.2080
29 0.2152 0.2106 0.2174 0.2117 0.1994 0.2091 0.2034 0.1973 0.2004
30 0.1802 0.2749 0.2228 0.1942 0.2231 0.2148 0.3642 0.3443 0.3769

Average 0.2733 0.2840 0.2830 0.2792 0.2706 0.2801 0.3280 0.3379 0.3402
SD 0.0701 0.0782 0.0734 0.0768 0.0813 0.0794 0.0767 0.0875 0.0837
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(19) The pine stands based on thirty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.4291 0.2840 0.3041 0.3869 0.2974 0.2700 0.6069 0.5219 0.4923
2 0.3030 0.2549 0.2781 0.2883 0.2773 0.2733 0.5646 0.7036 0.6561
3 0.1732 0.0914 0.1085 0.2511 0.1563 0.1692 0.3576 0.3658 0.3513
4 0.3256 0.2234 0.2251 0.3274 0.2529 0.2338 0.4323 0.3982 0.4102
5 0.3358 0.3256 0.2940 0.4008 0.4157 0.3711 0.5323 0.4713 0.4358
6 0.2296 0.2196 0.1884 0.2145 0.2160 0.1842 0.3575 0.3617 0.3413
7 0.2921 0.3611 0.2979 0.3071 0.4347 0.3207 0.6452 0.6741 0.5738
8 0.3947 0.1782 0.1920 0.3561 0.1659 0.1272 0.4079 0.3505 0.3001
9 0.2474 0.2416 0.2338 0.3637 0.3435 0.3539 0.4989 0.5173 0.5069
10 0.3276 0.1314 0.0745 0.3410 0.1288 0.0764 0.4904 0.4099 0.2651
11 0.3239 0.2994 0.2319 0.2865 0.3041 0.1840 0.4511 0.5796 0.3685
12 0.5542 0.4314 0.4280 0.5515 0.4715 0.4390 0.6561 0.5518 0.4934
13 0.4262 0.2807 0.3467 0.5147 0.4029 0.4342 0.6227 0.6342 0.6087
14 0.3651 0.2976 0.2934 0.4890 0.4457 0.4166 0.5909 0.5555 0.5097
15 0.4876 0.2919 0.3228 0.5312 0.3112 0.3069 0.6433 0.2979 0.3500
16 0.3818 0.1332 0.2435 0.5245 0.1936 0.3044 0.5712 0.4846 0.3389
17 0.2750 0.1592 0.0547 0.3623 0.2463 0.1068 0.5792 0.5817 0.3680
18 0.2957 0.3348 0.2754 0.3380 0.4215 0.3192 0.5232 0.7031 0.5974
19 0.3600 0.4213 0.2937 0.3817 0.4841 0.2921 0.4067 0.5702 0.3417
20 0.3016 0.1743 0.2256 0.3208 0.2028 0.2387 0.2592 0.2326 0.2283
21 0.4880 0.3602 0.3797 0.5009 0.4111 0.3742 0.4104 0.4454 0.3238
22 0.4024 0.4874 0.4679 0.4984 0.5476 0.5436 0.6225 0.7090 0.6731
23 0.4514 0.3640 0.3500 0.5349 0.4320 0.3938 0.6714 0.4883 0.4959
24 0.2456 0.2299 0.1869 0.3972 0.3817 0.3279 0.5671 0.5678 0.5515
25 0.5691 0.2123 0.2545 0.4955 0.2582 0.2008 0.4703 0.5344 0.3190
26 0.4853 0.3374 0.4086 0.5068 0.3683 0.3825 0.6513 0.5709 0.5772
27 0.5210 0.4368 0.4599 0.5844 0.4788 0.4819 0.6188 0.5441 0.4419
28 0.3374 0.5305 0.2768 0.4052 0.5663 0.2389 0.6247 0.6576 0.4027
29 0.3453 0.3091 0.3208 0.3876 0.3412 0.3587 0.5958 0.5396 0.5461
30 0.4790 0.3890 0.4139 0.4775 0.4371 0.3877 0.4882 0.5560 0.3700

Average 0.3718 0.2931 0.2810 0.4108 0.3465 0.3037 0.5306 0.5193 0.4413
SD 0.1003 0.1085 0.1030 0.0994 0.1185 0.1129 0.1070 0.1210 0.1202

(20) The pine stands based on thirty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.2847 0.2562 0.2538 0.3643 0.3513 0.3377 0.5787 0.6583 0.5940
2 0.4082 0.2459 0.1819 0.4358 0.2405 0.1479 0.4360 0.3942 0.2003
3 0.5207 0.3888 0.4464 0.5632 0.4392 0.4742 0.5747 0.5931 0.5776
4 0.4367 0.4041 0.4234 0.5522 0.5334 0.5490 0.6681 0.6794 0.6688
5 0.2014 0.2850 0.1902 0.2443 0.4086 0.2872 0.3487 0.5610 0.3953
6 0.5066 0.4115 0.3128 0.4700 0.4211 0.3180 0.4431 0.4487 0.3412
7 0.4859 0.3251 0.3292 0.4853 0.3339 0.3225 0.4235 0.3035 0.2895
8 0.3883 0.4315 0.4140 0.4431 0.4936 0.4637 0.6112 0.7308 0.5999
9 0.3314 0.2865 0.2415 0.4556 0.4527 0.3702 0.4736 0.5169 0.4348
10 0.3708 0.3125 0.2400 0.3630 0.3628 0.2497 0.4412 0.5197 0.3509
11 0.3501 0.4847 0.4110 0.3781 0.5919 0.4677 0.5501 0.6913 0.5345
12 0.3927 0.4257 0.4523 0.5433 0.5972 0.6239 0.6746 0.7146 0.7146
13 0.4476 0.3701 0.3697 0.4282 0.3945 0.3615 0.3854 0.3572 0.2980
14 0.3095 0.2398 0.2550 0.4346 0.3645 0.3720 0.6344 0.7044 0.6187
15 0.3098 0.3041 0.2475 0.3665 0.3935 0.2902 0.3453 0.5160 0.3026
16 0.2497 0.2454 0.2249 0.3572 0.3731 0.2784 0.5012 0.7011 0.4924
17 0.5436 0.4828 0.4797 0.6181 0.5217 0.5234 0.6463 0.6165 0.5623
18 0.4064 0.3610 0.3998 0.5235 0.4635 0.4799 0.5569 0.5996 0.5293
19 0.4431 0.3698 0.2650 0.4357 0.3691 0.2611 0.5577 0.5674 0.4342
20 0.3430 0.3465 0.2968 0.3882 0.4090 0.3257 0.5343 0.5652 0.4779
21 0.1832 0.1178 0.0785 0.2549 0.1856 0.1132 0.2710 0.2814 0.1541
22 0.2228 0.2217 0.1971 0.2119 0.2164 0.1775 0.2333 0.2132 0.1928
23 0.5955 0.2487 0.3249 0.6041 0.2143 0.2437 0.5105 0.2362 0.1289
24 0.2966 0.2418 0.2265 0.3685 0.3508 0.3173 0.4487 0.4577 0.3478
25 0.2891 0.2573 0.2770 0.3083 0.2669 0.2974 0.4690 0.4837 0.5717
26 0.4897 0.4706 0.4844 0.5378 0.5324 0.5444 0.6588 0.7650 0.7189
27 0.3458 0.1538 0.1341 0.4632 0.2376 0.1791 0.6582 0.5268 0.4192
28 0.4680 0.3635 0.3147 0.5536 0.5195 0.4147 0.5570 0.7014 0.6226
29 0.5024 0.3996 0.4171 0.5555 0.4880 0.4748 0.4539 0.4336 0.4826
30 0.4122 0.4045 0.4341 0.4428 0.4650 0.4648 0.4089 0.3770 0.3680

Average 0.3845 0.3285 0.3108 0.4384 0.3997 0.3577 0.5018 0.5305 0.4474
SD 0.1053 0.0944 0.1077 0.1053 0.1125 0.1284 0.1176 0.1552 0.1645

 

(21) The pine stands based on fifty training points with the SPB approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.2624 0.1446 0.1510 0.3059 0.2133 0.1915 0.5160 0.4853 0.4572
2 0.4467 0.1972 0.2328 0.4070 0.2109 0.2065 0.3603 0.3105 0.2538
3 0.2883 0.2652 0.2491 0.3594 0.2969 0.2666 0.5337 0.3522 0.3701
4 0.2757 0.1463 0.1522 0.3150 0.2051 0.1826 0.3683 0.2761 0.2460
5 0.3494 0.1734 0.1532 0.3560 0.2437 0.1727 0.4587 0.3732 0.2741
6 0.2732 0.2375 0.2012 0.3022 0.2684 0.1966 0.4552 0.3227 0.2313
7 0.3453 0.2304 0.2556 0.3905 0.2585 0.2649 0.5063 0.3950 0.3613
8 0.3917 0.2411 0.1819 0.3926 0.2716 0.1579 0.4732 0.3170 0.2359
9 0.2612 0.1096 0.1144 0.2821 0.1434 0.1073 0.3379 0.3440 0.2386
10 0.2601 0.2157 0.2411 0.2895 0.2449 0.2585 0.3858 0.3706 0.3544
11 0.2876 0.1799 0.1749 0.3489 0.2512 0.2048 0.4060 0.2659 0.2147
12 0.2469 0.1377 0.1510 0.2833 0.1914 0.1563 0.4266 0.3766 0.2550
13 0.2966 0.3293 0.3087 0.3141 0.3530 0.3176 0.3990 0.4879 0.3917
14 0.2441 0.3112 0.2587 0.2932 0.3608 0.2814 0.5076 0.5097 0.4337
15 0.2651 0.2147 0.1823 0.2712 0.2804 0.1982 0.3919 0.3949 0.2525
16 0.3198 0.2278 0.2153 0.3208 0.2432 0.1953 0.4755 0.3337 0.3303
17 0.4141 0.2246 0.2466 0.4319 0.2380 0.2410 0.4899 0.3302 0.3129
18 0.2925 0.2820 0.2594 0.3608 0.3620 0.3177 0.4099 0.4015 0.3334
19 0.1696 0.0801 0.0949 0.1725 0.0872 0.0794 0.3372 0.2411 0.1960
20 0.2996 0.1194 0.1781 0.3205 0.1407 0.1658 0.4635 0.4387 0.3237
21 0.3764 0.2954 0.2959 0.4173 0.3834 0.3431 0.4819 0.5290 0.4351
22 0.3804 0.2703 0.2989 0.4111 0.3002 0.3033 0.4570 0.4013 0.3830
23 0.3360 0.2634 0.2406 0.3264 0.3117 0.2225 0.4001 0.4409 0.2629
24 0.3191 0.2565 0.2989 0.4402 0.3715 0.3965 0.5176 0.5242 0.5115
25 0.3168 0.1847 0.2198 0.3154 0.2039 0.1987 0.4605 0.3299 0.3474
26 0.2634 0.0877 0.1116 0.2821 0.1069 0.1004 0.3895 0.2411 0.1836
27 0.4289 0.2771 0.2990 0.4701 0.3251 0.2865 0.5075 0.5144 0.3573
28 0.2766 0.1496 0.1243 0.3510 0.2191 0.1557 0.4652 0.3059 0.2489
29 0.3827 0.2743 0.2608 0.4295 0.3345 0.2637 0.4172 0.3749 0.2362
30 0.2010 0.1604 0.1150 0.2309 0.1797 0.1040 0.4119 0.3768 0.2568

Average 0.3090 0.2096 0.2089 0.3397 0.2534 0.2179 0.4404 0.3788 0.3096
SD 0.0657 0.0677 0.0647 0.0670 0.0783 0.0767 0.0558 0.0827 0.0835

(22) The pine stands based on fifty training points with the IWED approach

AGB LogAGB SqrtAGB BA LogBA SqrtBA Ht LogHt SqrtHt
1 0.3109 0.2406 0.3068 0.4088 0.3216 0.3731 0.5082 0.3825 0.3790
2 0.2775 0.1643 0.1587 0.3198 0.2167 0.1670 0.3925 0.3249 0.1551
3 0.3324 0.2153 0.2015 0.3676 0.2600 0.2206 0.4376 0.2972 0.2198
4 0.2833 0.2184 0.1602 0.3441 0.3090 0.1993 0.4497 0.4841 0.2872
5 0.2664 0.1884 0.1460 0.2949 0.2438 0.1735 0.4460 0.4364 0.2919
6 0.3163 0.2154 0.1732 0.3914 0.2910 0.2215 0.3559 0.2244 0.1669
7 0.3131 0.2042 0.2300 0.3481 0.2490 0.2600 0.3971 0.3690 0.3625
8 0.2742 0.1796 0.2273 0.3498 0.2472 0.2824 0.4752 0.3811 0.3678
9 0.2925 0.1921 0.2038 0.3522 0.2414 0.2258 0.3995 0.3106 0.2663
10 0.3387 0.2875 0.2866 0.4059 0.3667 0.3413 0.6063 0.5381 0.4653
11 0.3240 0.2533 0.2552 0.3579 0.2824 0.2741 0.5589 0.4198 0.4029
12 0.3363 0.2963 0.2664 0.3661 0.3527 0.2948 0.4421 0.5205 0.3965
13 0.3315 0.1874 0.1444 0.3823 0.2064 0.1484 0.5335 0.2830 0.2368
14 0.2605 0.1762 0.1601 0.2893 0.2265 0.1834 0.3693 0.2713 0.2076
15 0.3103 0.2521 0.2381 0.3123 0.2618 0.2331 0.4067 0.3387 0.3145
16 0.2694 0.2208 0.2157 0.3086 0.2896 0.2760 0.4253 0.4500 0.4147
17 0.3421 0.2813 0.3107 0.3800 0.3135 0.3348 0.5094 0.4636 0.4644
18 0.3577 0.2903 0.2387 0.4359 0.3785 0.2904 0.4989 0.4980 0.3426
19 0.3461 0.1640 0.1725 0.3770 0.2004 0.1587 0.3918 0.3376 0.1732
20 0.2394 0.2215 0.1810 0.2512 0.2875 0.2122 0.2546 0.4036 0.2432
21 0.3229 0.2172 0.2178 0.3625 0.2716 0.2469 0.5171 0.4935 0.4177
22 0.3192 0.2653 0.2414 0.3520 0.3430 0.2907 0.4822 0.4476 0.4188
23 0.3756 0.3388 0.3272 0.4521 0.4268 0.3984 0.5589 0.4934 0.4591
24 0.1942 0.0938 0.0639 0.2368 0.1942 0.1240 0.2989 0.3478 0.2476
25 0.2813 0.2263 0.2433 0.3300 0.2688 0.2727 0.5011 0.5049 0.4192
26 0.1772 0.0982 0.1117 0.2011 0.1247 0.1161 0.3230 0.1960 0.1660
27 0.3679 0.3191 0.3182 0.4201 0.3823 0.3689 0.4829 0.4599 0.4346
28 0.2550 0.1698 0.1523 0.3159 0.2384 0.1980 0.5187 0.3930 0.3246
29 0.2645 0.2294 0.1900 0.3243 0.2997 0.2415 0.4257 0.3633 0.3033
30 0.3640 0.3194 0.3362 0.4171 0.3611 0.3708 0.4347 0.3538 0.3454

Average 0.3015 0.2242 0.2160 0.3485 0.2819 0.2500 0.4467 0.3929 0.3231
SD 0.0482 0.0597 0.0669 0.0577 0.0662 0.0763 0.0803 0.0898 0.0975
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Appendix B 

 

The best combination of independent variables for above ground biomass (AGB), basal area, and height estimation based on Akaike’s 
Information Criterion (AIC).  Both best and worst regression model were presented for 22 different conditions (e.g. estimation model 
for the entire study site based on SPB approach with thirty, and fifty training points).  The order of selected independent variables their 
importance in the development of the regression model.   

 

(3) The interior forest stands based on SPB approach with 30 training points

Dependent  
variable Selected independent variables Model R2

AGB B5   /  B2  /  B3  /  B1 0.5379
Basal area B5  /  B2  /  B3  /  B1 0.4393

Height MVI7  /  B2  /  B1  /  MVI5 0.6244
AGB B4 0.1026

Basal area B5 0.0309
Height NDVI 0.0828

(4) The interior forest stands based on IWED approach with 30 training points

Dependent  
variable Selected independent variables Model R2

AGB B4  /  MVI7  /  B1  /  B2  /  B3  /  NDVI 0.6889
Basal area B4  /  MVI7  /  B1  /  B3  /  B2  /  NDVI 0.6368

Height B5 0.6467
AGB B4 0.2044

Basal area B4 0.1163
Height NDVI 0.0287

(1) The entire study site based on SPB approach with 30 training points

Dependent  
variable Selected independent variables Model R2

AGB MVI7 / B1 / B2 / B7 / B4 / NDVI 0.7039
Basal area MVI7  /  B1  /  B7  /  B4  /  B2   /  NDVI 0.5445

Height B2  /  B5  /  MVI5  / B7  /  B4  /  MVI7 0.6576
AGB B2 0.0371

Basal area B5 0.0191
Height NDVI 0.0514

(2) The entire study site based on IWED approach with 30 training points

Dependent  
variable Selected independent variables Model R2

AGB B1  /  B3 0.4076
Basal area B1  /  B3 0.3721

Height B4  /  MVI5  /  B1  /  B2 0.5931
AGB B1 0.0406

Basal area B1 0.0444
Height B5 0.0637
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(5) The hardwood stands based on SPB approach with 30 training point

Dependent  
variable Selected independent variables Model R2

AGB B4  /  NDVI  /  B1  /  MVI7  /  B3   / B7 0.5937

(6) The hardwood stands based on IWED approach with 30 training points

Dependent  
variable Selected independent variables Model R2

AGB B1  /  B5  /  B7  /  B4  /  MVI5  /  MVI7 0.6271
Basal area MVI7  /  MVI5  /  B1 0.4924

Height B3  /  B1  /  B2  /  MVI5  /  B4  /  NDVI 0.5198
AGB B2 0.0202

Basal area B7 0.0945
Height NDVI 0.0778

 The 
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AGB

Heig

(8) The 
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AGB

Basal
He

s (7) pine stands based on SPB approach with 30 training points

Basal area B3  /  B1  /  B4  /  NDVI  /  MVI7  /  B7 0.6542
Height B7 0.1770
AGB MVI7 0.0417

Basal area B7 0.0483
Height MVI7 0.0350

Basal area B3  /  B5  /  B7  /  NDVI  /  MVI5  /  B4 0.5797
Height B2 / B3 / B1 0.2668
AGB B7 0.0175

Basal area B5 0.0375

ndent  
iable Selected independent variables Model R2

B2 / B5 0.2202

ht B2 / B7 0.1533

pine stands based on IWED approach with 30 training points

ndent  
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B2 / B1 / MVI5 / 0.2178
 area B2 / B3 / MVI5 / B7 / B4 / B5 0.6012

ight B5 0.5616
B2 0.0443

 area B5 0.1394
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(9) The entire study site based on SPB approach with 50 training points

Dependent  
variable Selected independent variables Model R2

AGB NDVI / MVI7 / MVI5 / B1 / B4 / B3 0.5006
Basal area B2 / B3 / NDVI / B7 / MVI7 / B1 0.4260

Height B2 / B5 0.2483
AGB MVI5 0.0721

Basal area MVI5 0.0235
Height MVI5 0.1702

(10) The entire study site based on IWED approach with 50 training points

Dependent  
variable Selected independent variables Model R2

AGB B4 / MVI7 / MVI5 / B3 / NDVI / B5 0.4122
Basal area B4 / MVI7 / B7 / MVI5 / B5 / NDVI 0.5278

Height MVI7 / MVI5 / NDVI / B4 / B5 / B3 0.5639
AGB B4 0.0250

Basal area B2 0.0142
Height B5 0.0185

(

(

11) The inte

Dependent  
variable

AGB
Basal area

Height
AGB

Basal area
Height

12) The inte

Dependent  
variable

AGB
Basal area

Height
AGB

Basal area

Selected independent variables Model R2

B4 / B2 / NDVI 0.5363
B4 / B2 / NDVI 0.4426
B4 / B3 / MVI5 / MVI7 / B1 0.5541
B4 0.1577
B4 / B2 / NDVI 0.0957

Height B5 0.0807

Selected independent variables Model R2

B4 / MVI5 / NDVI / B5 / B3 / B1 0.6613
B4 / NDVI / MVI5 / B3 / B5 / B1 0.5427
B5 / B3 / MVI7 / B7 / NDVI / MVI5 0.5271
B3 0.1386
B7 0.1224
B3 0.0441

rior forest stands based on IWED approach with 50 training points

rior forest stands based on SPB approach with 50 training points
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(13) The hardwood stands based on SPB approach with 50 training points

Dependent  
variable Selected independent variables Model R2

AGB B1 0.1267
Basal area B3 0.1328

Height MVI5 0.2487
AGB B3 0.0567

Basal area B2 0.0349
Height B2 0.0363

(14) The hardwood stands based on IWED approach with 50 training points

Dependent  
variable Selected independent variables Model R2

AGB B3 / B5 / B7 / B4 / NDVI / B1 0.4027
Basal area B3 / B1 / B7 / B5 / B4 / NDVI 0.2565

Height MVI7 / B1 / B3 / B4 / NDVI / B5 0.4490
AGB B1 0.0432

Basal area MVI5 / B2 0.1026
Height B2 0.0094

(15) The pine stands based on SPB approach with 50 training points

Dependent  
variable Selected independent variables Model R2

AGB MVI5 / NDVI / B5 / B3 / B4 / B1 0.4384
Basal area B2 / B5 / B1 / MVI5 / NDVI / B3 0.3960

Height B2 / B3 / B1 0.2439
AGB B2 0.0039

Basal area MVI5 0.0187
Height NDVI / MVI7 0.1037

(16) The pine stands based on IWED approach with 50 training points

Dependent  
variable Selected independent variables Model R2

AGB B2 / B1 / MVI5 0.2028
Basal area B2 / B1 / MVI5 0.2272

Height B5 / B7 / MVI5 0.3457
AGB B7 0.0143

Basal area B7 0.0001
Height B5 0.0720
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(17) The entire study site based on SPB approach with 100 training points

Dependent  
variable Selected independent variables Model R2

AGB B4 / B2 / MVI5 / B7 / MVI7 / B1 0.4110
Basal area B4 / B2 / MVI5 / B7 / MVI7 / B1 0.3525

Height B4 / B2 / NDVI / B3 / B7 / MVI5 0.3082
AGB B4 0.0969

Basal area B4 0.0383
Height B4 0.0871

(18) The entire study site based on IWED approach with 100 training points

Dependent  
variable Selected independent variables Model R2

AGB B4 0.1605
Basal area NDVI 0.0965

Height B4 / B2 / MVI5 0.1714
AGB NDVI / MVI5 / MVI7 0.1121

Basal area B3 0.0412
Height B5 / B1 0.0148

(19) The interior forest stands based on SPB approach with 100 training points

Dependent  
variable Selected independent variables Model R2

AGB NDVI / B2 / B4 / B3 / B5 / MVI5 0.3596
Basal area NDVI / B2 / B4 / B3 / MVI7 / B5 0.3178

Height B4 / MVI7 / B1 0.2144
AGB NDVI 0.1643

Basal area B4 0.1174
Height NDVI / MVI5 0.1085

(20) The interior forest stands based on IWED approach with 100 training points

Dependent  
variable Selected independent variables Model R2

AGB B4 / B3 / NDVI / B1 / B5 / MVI5 0.4022
Basal area NDVI / MVI5 / MVI7 0.2944

Height B4 / M5 / M7 / B1 0.3312
AGB NDVI 0.1365

Basal area B4 / B2 / MVI5 0.1368
Height B2 / B5 0.0719
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(21) The entire study site based on SPB approach with 200 training points

Dependent  
variable Selected independent variables Model R2

AGB B4 / B7 / MVI7 0.1934
Basal area B4 / B1 / MVI5 / B7 / B2 / B3 0.1890

Height B4 / MVI5 / B1 0.1636
AGB NDVI 0.0949

Basal area B4 0.0443
Height B4 0.0688

(22) The entire study site based on IWED approach with 200 training points

Dependent  
variable Selected independent variables Model R2

AGB NDVI / B4 / B3 / B1 / B5 / B7 0.2592
Basal area NDVI / MVI5 / B1 / B4 / B7 / MVI7 0.2364

Height B4 / B2 / MVI5 / B7 / B1 / B5 0.1921
AGB B4 0.1052

Basal area B4 0.0598
Height B4 / B5 / B2 0.0858
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Appendix C 

 

The normality test in independent variables based on Kolmogrov-Smirnov test values.  The cyan highlight indicated the set of 
independent variables used to develop the best regression model among 30 different sets of thirty randomly drawn training points in 
the entire study site.  The yellow highlight indicated the set of independent variables used to develop the worst regression model 
among 30 different sets of thirty randomly drawn training points in the entire study site.  P-values smaller than 0.01 are used to reject 
the assumption of normality. 

R2 p-value 
# AGB BA Ht Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 NDVI MVI5 MVI7
1 0.5401 0.5867 0.2525  < 0.0100  < 0.0100  < 0.0100 0.0784  < 0.0100 0.0194  < 0.0100 0.0933 0.0105
2 0.3194 0.3267 0.4317  < 0.0100  < 0.0100  < 0.0100 0.1383 > 0.1500  < 0.0100  < 0.0100  < 0.0100  < 0.0100
3 0.6863 0.5135 0.5092  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500  < 0.0100  < 0.0100  < 0.0100  < 0.0100
4 0.4825 0.4039 0.2979  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 0.0729 0.0138  < 0.0100  < 0.0100
5 0.4918 0.4553 0.5037  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 0.0329 > 0.1500 0.0968  < 0.0100
6 0.3775 0.4021 0.5711  < 0.0100  < 0.0100 0.0271 > 0.1500 0.0648 0.02 > 0.1500  < 0.0100  < 0.0100
7 0.4094 0.4404 0.4265  < 0.0100  < 0.0100  < 0.0100 0.1175 > 0.1500 0.0737 > 0.1500  < 0.0100  < 0.0100
8 0.2708 0.2951 0.3147  < 0.0100  < 0.0100  < 0.0100 > 0.1500 0.1365  < 0.0100 > 0.1500 0.0241  < 0.0100
9 0.5033 0.4198 0.3199  < 0.0100  < 0.0100  < 0.0100 > 0.1500 0.0462  < 0.0100 > 0.1500 0.0941 > 0.1500

10 0.4016 0.4052 0.4900  < 0.0100  < 0.0100  < 0.0100 0.1136 > 0.1500  < 0.0100  < 0.0100  < 0.0100  < 0.0100
11 0.5542 0.5840 0.4029  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500  < 0.0100 > 0.1500 > 0.1500 0.0364
12 0.2288 0.2095 0.3549  < 0.0100  < 0.0100 0.0202 > 0.1500  < 0.0100  < 0.0100 0.0746 0.0501 0.0883
13 0.4894 0.4136 0.3696  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 0.0102  < 0.0100  < 0.0100  < 0.0100
14 0.4644 0.4704 0.4468  < 0.0100  < 0.0100 0.0219 0.0389 0.0749  < 0.0100 0.0474 0.0563 0.0189
15 0.3309 0.4033 0.5229  < 0.0100  < 0.0100  < 0.0100 0.0749 > 0.1500  < 0.0100 0.0949 0.0949 0.0324
16 0.4431 0.4502 0.3872  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 > 0.1500  < 0.0100  < 0.0100  < 0.0100
17 0.2836 0.2439 0.1525  < 0.0100  < 0.0100  < 0.0100 > 0.1500  < 0.0100  < 0.0100 > 0.1500 0.0394 > 0.1500
18 0.7774 0.6159 0.5716  < 0.0100  < 0.0100 0.0205 > 0.1500 0.0481  < 0.0100 0.0256  < 0.0100  < 0.0100
19 0.5590 0.5641 0.6000  < 0.0100  < 0.0100 0.0103 > 0.1500 > 0.1500 0.021  < 0.0100  < 0.0100  < 0.0100
20 0.4919 0.4522 0.4240  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500  < 0.0100 0.0938  < 0.0100 0.0341
21 0.4464 0.4379 0.5234  < 0.0100  < 0.0100  < 0.0100 0.0786 > 0.1500  < 0.0100  < 0.0100  < 0.0100  < 0.0100
22 0.4795 0.5205 0.2523  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500  < 0.0100 0.0763 0.0678 0.0519
23 0.3120 0.3303 0.4555  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 0.0173 0.1267 > 0.1500 0.0174
24 0.4181 0.4859 0.4320  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500  < 0.0100 0.1074 0.0147  < 0.0100
25 0.4437 0.4079 0.5066  < 0.0100  < 0.0100  < 0.0100 > 0.1500 0.1382  < 0.0100 > 0.1500  < 0.0100  < 0.0100
26 0.4021 0.3740 0.3297  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 0.0281 0.0118 0.0173 0.015
27 0.3795 0.3839 0.2453  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500  < 0.0100 > 0.1500 0.0964 0.0824
28 0.2792 0.2119 0.4155  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 0.1004 0.0216 0.087 0.0252
29 0.4796 0.5253 0.5169  < 0.0100  < 0.0100  < 0.0100 > 0.1500 > 0.1500 0.0136  < 0.0100 0.0436 0.0843
30 0.4382 0.4319 0.6830  < 0.0100  < 0.0100  < 0.0100 0.1093 > 0.1500  < 0.0100 0.0535  < 0.0100  < 0.0100

Average 0.4395 0.4255 0.4237
SD 0.1185 0.1033 0.1200
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